Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2256
2017-07-18 ...
  • July 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
Safety continues to be one of the most important factors in motor vehicle design, manufacture and marketing. This seminar provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this seminar will enable attendees to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
2017-04-06
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2017-04-06
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2017-04-04
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Today, highly automated driving is paving the road for full autonomy. From basic cruise control to complex automated systems, there is a wide range of technology on the road and more highly automated systems are being rigorously tested that are soon going to be available to consumers. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today.
2017-03-28
Technical Paper
2017-01-1452
Keith Friedman, John Hutchinson
Pedestrian-vehicle impacts are involved in a large portion of fatalities in the United States. Many of these impacts involve hit and run impacts and subsequent forensic engineering evaluation of vehicles is required to establish whether a particular vehicle was involved in a particular pedestrian impact. These issues become very important in criminal proceedings to ensure that the justice system is provided with reliable and scientific information upon which to decide the course of action. This is particularly true in fatal impacts as the consequence of incorrect and unreliable information can lead to conviction of an uninvolved driver and vehicle as well as incarceration for long periods. When this happens, for example due to initial ineffective evaluation of the evidence, even greater efforts are required in order to clarify the facts for the judicial system.
2017-03-28
Technical Paper
2017-01-1449
Yong Ha Han
To comply with the regulations of pedestrian safety, particularly the head impact requirements, the geometry of the hood panel is significant. The objective of this research was to develop a standardized automated method to design a hood which meets the pedestrian headform impact safety regulations and additionally the stiffness and fatigue requirements. The developed method was performed in two steps. In the first step, a topometry optimization with Genesis/ESL(Equivalent Static Load) for the design of the supporting structure of an engine hood has been performed. The result was a preliminary CAD design of the inner hood. Since the objectives and constraints have to be defined for the linear optimization in the ESL method, alternative criteria need to be established for nonlinear responses like HIC values. Another challenging task is the translation of the nonlinear LS-DYNA model to a linear Genesis model.
2017-03-28
Technical Paper
2017-01-1450
Daniel Perez-Rapela, Jason Forman, Haeyoung Jeon, Jeff Crandall
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Assessment methods become more complicated for vehicles equipped with pyrotechnic deployment systems, that are typically used to lift up the hood surface for creating more deformation space prior to pedestrian head impact. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro-NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
2017-03-28
Technical Paper
2017-01-1454
Kathryn wineman, Sriram Gopal, Prakash Basavarajaiah, Youn Park, Oliver Nwankwo, Richard Wang, Sudip Sankar Bhattacharjee, Abhilash Patel
Detail procedures for defining head impact test zone and impactor positioning vary significantly between GTR-9 (Global Technical Regulation) and NCAP (New Car Assessment Program) protocols. This paper will present a CAE tool that can be used for generating CAE input data for multiple head impact analysis points for a selected assessment protocol (GTR or NCAP). Altair’s Hypermesh based pre-processing tool provides a series of input files for LS-DYNA or RADIOSS simulation codes. Upon batch execution of the input files by pre-chosen crash simulation code, results are post-processed by Altair’s Hyperworks with visual display of HIC responses over the defined head impact assessment zone. Graphically presented HIC map also provides ability for detail investigation of specific problem areas by providing live links between HIC response summary map and detail graphical view of local response time histories and impact animation views.
2017-03-28
Technical Paper
2017-01-1455
Sang il Kim, Chung Hwa Jung, Hyung Joong Park, Seung Jun YANG, Sang Kyoon Lim, Seong Tae Hong
This paper is about Improving children pedestrians' head protection performance and cost, weight reduction through the development of active hood latch. by this new mechanism, We can ensure mass production and It is applied to TUCSON. We developed ascending active mechanism. This new mechanism Pop-up and unlock were performed at the same time. It has only one actuator operable structure. As a result, the improvement of the operating speed was reduced by 50% or more size, weight, cost compared to conventional technology. Through this paper a direct connection pop up mechanism, active hood latch development to maximize pedestrian protection performance at very low cost.
2017-03-28
Technical Paper
2017-01-1429
Sung Rae kim, Inju Lee, Hyung joo Kim
In motor-vehicle frontal crashes, occupants often suffer from the abdominal injuries when the lap belt excurses over the pelvic bone, commonly referred to as submarining. Especially, it is well known that the obese occupants frequently get injured caused by submarining due to out-of-position belt fittings. This paper aims to investigate the interaction between the pelvis and the lap belt during a frontal crash event. For this purpose, twelve sled tests on four obese female Post-Mortem Human Subjects (PMHS) and four sled tests on the Hybrid III 50th dummy were carried out. In each test, a 3D motion capture system was installed to track the movement of the pelvis and the lap belt. Moreover, the validated subject specific FE model scaled from the 50th percentile male GHBMC model to fit to obese female PMHS in prior study was also simulated.
2017-03-28
Technical Paper
2017-01-1433
Enrique Bonugli, Joseph Cormier, Matthew Reilly, Lars Reinhart
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and ‘typical’ roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface.
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Out-of-position (OOP) driver tests were designed to address concerns about airbag introduced injury in situations while the occupant is nearer to the airbag module than in a normal seated position. The 5th percentile female has instrumentation for measuring ATD sternum displacement (potentiometer) and acceleration (accelerometers) which can be used to compute compression rate. This paper documents a study investigating the capability of the chest accelerometers to accurately assess non-distributed loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid 3 - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid 3 – 50th percentile male ATD. A 50th percentile male Global Human Body Model was then applied for enhanced anatomical review.
2017-03-28
Technical Paper
2017-01-1446
Allen Charles Bosio
With the introduction of the new USNCAP protocols, which incorporated assessment of a 5th percentile occupant in the passenger seat, a variety of solutions were introduced to achieve 5 star accreditation using additional restraint solutions such as, but not exclusively, knee airbags, dual pretensioning and adaptive venting . The engineering challenge was to understand and design a passenger airbag system that recognized and adapted itself to the smaller, belted, 5th percentile female, while adequately restraining the larger, unbelted, 50th percentile male. In this paper we describe the development of an airbag restraint which achieves 5 star performance levels, where the design focus from the outset was to achieve minimal head, neck & chest injury risk. This was achieved without the need for active adaptive features. The CAE tools Madymo and Radioss were critical to the design of a new patented airbag which repeatedly demonstrated USNCAP RRS <=0.66.
2017-03-28
Technical Paper
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
This paper discusses mechanisms of spine fracture during racecar crash, and investigates possible modifications to the seat and driver restraint system to help reduce spine fracture risk. This study focused on an accident during the World Endurance Championship in which a driver sustained bony spine fractures at T11 and T12 as the racecar collided against the tire wall. Finite element (FE) simulations were analyzed to understand the spinal fracture mechanism, the driver kinematics and interactions between the driver and the seat/restraint system. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to the driver size, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver torso moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the front of the seat cushion.
2017-03-28
Technical Paper
2017-01-1451
Jan Vychytil, Jan Spicka, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Active bonnet system is usually used in higher price range models of cars. Its application in small cars is exceptional. Therefore, the aim of this paper is to use numerical simulations for investigating this case. That is, to evaluate possible benefit of active bonnet system for a small car. We use a novel approach in developing a simplified model of a car bonnet. Its surface is segmented to form an MBS model with hundreds of rigid bodies. Each of them is connected via translational joint to a base body. Local stiffness of each joint is validated using a headform impactor corresponding to the EuroNCAP mapping. Hence, the structures beneath the bonnet are taken into account. The model of the bonnet is embedded in a whole model of a small car in a simulation of a real accident. VIRTHUMAN model is scaled in height, weight and age to represent exactly the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident.
2017-03-28
Technical Paper
2017-01-0264
Venkatesh Babu, Ravi Thyagarajan, Jaisankar Ramalingam
In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE),are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
2017-03-28
Technical Paper
2017-01-1430
Tony R. Laituri, Scott G. Henry
To consider injury trends and to establish bases for potential future risk analyses, we categorized head injuries in real-world frontal crashes as being "brain-related," "bone-related," and/or "otherwiserelated." Specifically, we studied adult drivers in towaway, 11-1 o'clock, full-engagement frontal crashes in the National Automotive Sampling System (NASS, 1995-2012 calendar years, 1985-2012 model-year light passenger vehicles). Those data were considered subject to three levels injury (AIS1+, AIS2+, AIS3+) , two levels of restraint (properly-belted, unbelted), and two eras of technology, based on driverairbag fitment (Older Vehicles, Newer Vehicles). For each injury level, 88 possible bins of data were formed to quantify injury rates for the various head-injury categories, eras, restraint levels, speed changes, and crash severities.
2017-03-28
Technical Paper
2017-01-1434
Dongran Liu, Yi Zhang, Bruno Costa, Marcos Paul Gerardo-Castro
Heart rate is one of the most important biological features for health information. Most of the state-of-the-art heart rate monitoring systems relies on invasive technologies that require physical contact with the user. In this paper, we propose a non- invasive technology based on a single camera to measure the users heart rate in real time. The algorithm estimates the heart rate based on facial color changes. The input is a series of video frames with the automatically detected face of the user. A Gaus- sian pyramid spatial filter is applied on the inputs to obtain a down sampled high signal-to-noise ratio images. A temporal Fourier transform is applied to the video to get the signal spec- trum. Next, a temporal band-pass filter is applied on the trans- formed signal in the frequency domain to extract the frequency band of heart beats. The heart rate is then estimated by finding the dominant frequency in the Fourier domain.
2017-03-28
Technical Paper
2017-01-1428
Berkan Guleyupoglu, Ryan Barnard, Francis Gayzik
Computational modeling of the human body is increasingly used to evaluate countermeasure performance during simulated vehicle crashes. During crash simulations, there are different injury criteria that can be calculated from such models and these can either be correlative (HIC, BrIC, etc.) or based on local deformation and loading (rib fracture, organ damage, etc.). In this study, we present a method to extract rib fracture data. The GHMBC M50-O (v. 4.3, 1.3M nodes, 2.2M elements, 76.8 kg) model was used in the simulations with rib fracture enabled and were run on a Linux cluster using 48 CPUs and MPP LS-DYNA. Rib fracture in the M50-O model is handled through element deletion once the element surpasses 1.8% effective strain over multiple time-steps. The algorithm central to the methodology presented extracts rib fracture data and requires 4-element connectivity to register a fracture.
2017-03-13 ...
  • March 13-14, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Side impact crashes account for approximately twenty-six percent of all motor vehicle fatal crashes, second only to frontal crashes, according to a report by the National Highway Transportation and Safety Administration (NHTSA). While car companies and suppliers continue to develop new technologies that make vehicles safer, NHTSA rolled out updated safety regulations (FMVSS 214) based on new research studies, making vehicle safety design more and more complex. This seminar is designed to familiarize participants with the engineering principles behind vehicle and restraint designs for occupant safety.
2017-01-10
Technical Paper
2017-26-0003
Chandrashekhar Thorbole
Abstract The seatbelt is the primary restraint device that increases the level of occupant protection in a frontal crash. The belt performance is enhanced by the supplemental restraint provided by the airbag; seat and knee bolster working in combination with this primary restraining device. Small occupants are vulnerable to upper neck injuries when seated very close to the steering wheel. A lot of research and data availability for this situation ultimately led to the development of countermeasures capable of reducing upper neck loading. However, no data or research is available on the lower neck dynamic response of a small occupant primarily a 5th percentile female seated away from the steering wheel. MADYMO (Mathematical Dynamic Modeling), a biodynamic code is employed to validate a standard NHTSA (National Highway Traffic Safety Administration) frontal impact rigid barrier test with a 5th percentile ATD (Anthropomorphic Test Device) in the driver position.
2017-01-10
Technical Paper
2017-26-0016
Jeya Padmanaban, R. Ravishankar, Ajit Dandapani
Abstract The Road Accident Sampling System - India (RASSI) accident database being developed by an international consortium of manufacturers and safety researchers is currently India’s only source of in-depth crash data. The database includes information on accident, vehicle, and driver factors associated with each crash, which is collected through on-scene crash investigations conducted by trained crash investigators, from four key sample regions (Coimbatore, Pune, Ahmedabad, and Kolkata). As the RASSI database continues to grow, the next step is to ensure that the sample data can be reliably extrapolated to the whole of India. This paper is an initial attempt to develop national estimates by crash type based on a few sampling locations currently being investigated by the RASSI teams in India. RASSI data was treated as a stratified sample of Indian accidents, and the locations, where the crash data is being collected, were considered as primary sampling units.
2017-01-10
Technical Paper
2017-26-0019
Kantilal P. Patil, Viswanatha Saddala
Abstract The objective of this paper is to minimize occupant injuries in offset frontal crash with pulse characterization, by keeping vehicle front crush space & occupant survival space constant. Crash pulse characterization greatly simplifies the representation of crash pulse time histories. The parameters used to characterize the crash pulse are velocity change, time & value of dynamic crush, and zero cross-over time. The crash pulse slope, peaks, average values at discrete time intervals have significant role on occupant injuries. Vehicle crash pulse of different trends have different impact on occupant injury. The intension of crash pulse characterization study is to come out with one particular crash pulse which shows minimum occupant injuries. This study will have significant impact in terms of front loading on crash development of vehicle.
2016-11-08
Technical Paper
2016-32-0057
Yuji Arai, Makoto Hasegawa, Takeshi Harigae
Abstract ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
CURRENT
2016-07-12
Standard
J2052_201607
This methodology can be used for all calculations of HIC, with all test devices having an upper neck triaxial load cell mounted rigidly to the head, and head triaxial accelerometers.
2016-04-13
Event
Focusing on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as mounts or bushings, shock absorbers, and joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
2016-04-13
Event
Focusing on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as mounts or bushings, shock absorbers, and joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
Viewing 1 to 30 of 2256

Filter

  • Range:
    to:
  • Year: