Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2193
2016-07-26 ...
  • July 26-27, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Side impact crashes account for approximately twenty-six percent of all motor vehicle fatal crashes, second only to frontal crashes, according to a report by the National Highway Transportation and Safety Administration (NHTSA). While car companies and suppliers continue to develop new technologies that make vehicles safer, NHTSA rolled out updated safety regulations (FMVSS 214) based on new research studies, making vehicle safety design more and more complex. This seminar is designed to familiarize participants with the engineering principles behind vehicle and restraint designs for occupant safety.
2016-04-18 ...
  • April 18-20, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Safety continues to be one of the most important factors in motor vehicle design, manufacture and marketing. This seminar provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this seminar will enable attendees to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
2016-04-13
Event
Focusing on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as mounts or bushings, shock absorbers, and joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
2016-04-13
Event
Focusing on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as mounts or bushings, shock absorbers, and joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
2016-04-05
Technical Paper
2016-01-0436
Bolin Zhao, Chen Lv, Junzhi Zhang, Theo Hofman, Maarten Steinbuch
Distinguished from the conventional internal combustion engine vehicles, most of the pure electric vehicles are equipped with only a fixed-ratio reduction gear, because of the wide speed range of the electric motor. For most of the vehicle’s speed and acceleration requirements, they can be satisfied through application of only a fixed-ratio reduction gear. However, within some speed range, the operation efficiency of the electric motor is relatively low, which affects the overall energy efficiency of the electric vehicle. Thus, application of a two-speed gearbox is able to remain the electric motor working within high-efficiency range during the whole operation conditions, which has a good potential to further improve the electric vehicle’s energy economy. Based on the above analysis, in this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car.
2016-04-05
Technical Paper
2016-01-0427
Chang Qi, XiaoLong Feng, Yu du, Shu Yang, Da-Zhi wang
Large rear-dump mining trucks often suffer from rock impacts which cause adverse vibration during loading operation, resulting in structural damage and deteriorated fatigue life of the body. To decrease the body vibration under heavy rocks’ impact loading, an innovative active suspension system concept was put forward for the rear-dump mining trucks in this work. The new system was developed using simulation methods in three steps. Firstly, a simplified multi-body system dynamic model of a 360t load capacity rear-dump mining truck under rock impact was built in ADAMS as a base model. Secondly, by using the joint simulation method, the base model was translated into a system function module in MATLAB, and an active PID control system to adjust the suspension force was designed base on the modules in SIMULINK. Finally, parameter optimization was conducted to guarantee the proposed control system a better damping performance during the loading process.
2016-04-05
Technical Paper
2016-01-0435
Lirong Wang
Speed bumps are a common traffic calming device that uses vertical deflection to slow motor-vehicle traffic in order to improve traffic safety conditions. Such vertical raising of road pavement had been studied and commonly used as a passive method to reduce the speed of vehicle. Speed bumps generally slow vehicle speed to 5–10 mph (8.0–16.1 km/h), and some to 10–20 mph (16–32 km/h). On one side, speed bumps/humps effectively calm traffic speed to protect pedestrians. On the other side, it may cause vehicle damage and passenger discomfort. In Sweden, an evaluation of spinal stress in bus drivers against ISO 2631-5 required that a driver shall encounter less than 150 bumps in a day at the maximum acceptable speed 10 km/h. When a vehicle touches a speed bump, the speed bump receives the energy transferred by the weight and velocity of the vehicle. Harvesting the vibration energy from speed bump becomes a valid solution in areas where grid electricity is economically available.
2016-04-05
Technical Paper
2016-01-0432
Xincheng Liang
Vibration energy may cause thermal failure of shock absorber when vehicles are driving on the terrible roads. If the energy can be regenerated, the thermal failure is eliminated entirely and the driving range is enhanced a lot for electric vehicles. Hence, a system of recycling vibration is proposed, and some curves, including force-displacement and rotating speed of the motor, are also got in the paper. In order to validate the credibility of simulations, a test bench is built and concerned data have been collected. In addition, some factors, which are closely related to the performance of riding comfort, are analyzed. Simulation and experiment results indicate bubbles in the oil are vital to the reliability of recycling system, and the damping resistance should be in the more appropriate scope. So the structure of recycling vibration system must be optimized, and the more excellent feature of recycling system is expected.
2016-04-05
Technical Paper
2016-01-1370
Vali Farahani, Salamah Maaita, Aditya Jayanthi
During the course of automobile Instrument Panel (IP) design development, the occupant head impact CAE simulation on IP are routinely performed to validate FMVSS201 requirements. Based on FMVSS201 requirements, the potential head impact zones on the IP are first identified. Then, the head impact zones are used to locate the various target points that must be impacted on IP. Once the critical target locations on IP are chosen, there are several computational steps that are required to calculate impact angles and head form (HF) center of rotation in reference to target points. Then, CAE engineer performs a repetitive process that involves positioning each individual HF with proper impact angle, assigning initial velocity to HF, and defining surface contacts within the finite element model (FEM). To simplify these lengthy manual steps, a commercially available CAE software tool is used to automate these steps.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
The vehicle crash pulse severity is a measure of how severely the vehicle crash pulse has an effect on the occupant injury. The objective of this research is to evaluate the assessability of vehicle crash pulse severity in frontal New Car Assessment Program (NCAP) tests. In this study, the existing metrics derived from vehicle crash pulse in the frontal impact are reviewed and categorized into 4 groups in the way of how occupant responses are considered. Then the severity of vehicle crash pulses of the frontal NCAP tests was evaluated by existing metrics. A total of 60 frontal NCAP test data collected from the MY 2012 vehicle test program are analyzed. The linear regression analyses and sled test simulations are conducted to identify their correlation to other metrics and dummy injuries. The results show that some of existing metrics are able to assess crash pulse severity in frontal NCAP tests.
2016-04-05
Technical Paper
2016-01-1512
Jeya Padmanaban, Roger Burnett, Andrew Levitt
This paper updates the findings of prior research addressing the relationship between seatback strength and likelihood of serious injury/fatality to belted drivers and belted rear seat occupants in rear-impact crashes. Statistical analyses were performed using 1995-2014 CY police-reported crash data from fifteen states. Seatback strength for over 100 vehicle models (model years 1996-2013) was included in the analysis. Seatback strength is measured in terms of the maximum moment that results in 10 inches of seat displacement. These measurements range from 5,989 in-lbs to 39,918 in-lbs, resulting in a wide range of seatback strengths. Additional analysis was done to see whether Seat Integrated Restraint Systems (SIRS) perform better than conventional belts in reducing driver and rear seat occupant injury in rear impacts. Field data shows the injury rate for belted drivers and belted rear seat occupants in rear-impact crashes is less than 1%.
2016-04-05
Technical Paper
2016-01-1540
Timothy Keon
The National Highway Traffic Safety Administration (NHTSA) has performed prior research investigating THOR 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 kph frontal rigid barrier crash event. In addition, Hybrid III 5th adult female (AF05) ATDs are used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs are positioned in the right front passenger and right rear passenger seating positions. For the right front position, the NCAP seating procedure was used with the seat fore-aft position set to mid-track. For the right rear position, the seating procedure used was from the FMVSS 214 Side Impact TP. The NCAP Frontal Impact Testing test procedure was followed for test setup and execution. Some additional instrumentation on the vehicle as well as some additional measurements was added to this test setup.
2016-04-05
Technical Paper
2016-01-1485
Noritoshi Atsumi, Yuko Nakahira, Masami Iwamoto, Satoko Hirabayashi, Eiichi Tanaka
The reduction of higher brain dysfunction due to traumatic brain injury (TBI) caused by head rotational impact in traffic accidents is needed. However, the injury mechanism still remains unclear. Brain parenchyma of the head finite element (FE) model has been generally modeled as simple isotropic viscoelastic materials in past analyses. In this study, we developed a new constitutive model describing most of the mechanical properties in brain parenchyma such as anisotropy in white matter, strain rate dependency, and the characteristics in unloading process for further understanding of TBI mechanism. The validation of the constitutive model were performed against several material test data from the literature by using simple one element model. The model was also introduced into the human head FE model of THUMS v4.02 and then validated against post mortem human subjects (PMHS) test data about brain tissue displacements under rotational impacts.
2016-04-05
Technical Paper
2016-01-1516
Takahiro Suzaki, Noritaka Takagi, Kosho Kawahara, Tsuyoshi Yasuki
Approximately 20% of traffic deaths in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment were researched by Zhang et al.(2014) using Rollover Buck test system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. This paper describes results of occupant kinematics of 95th percentile male (AM95), 50th percentile male (AM50), and 5th percentile female (AF05), simulated using THUMS, when a rolling condition was added to Rollover Buck FE model that include the cases using a rigid mock-up seat and a vehicle seat. Main results were as follows: Lateral head displacement of AM95 case on the right side seat was the largest among all cases.
2016-04-05
Technical Paper
2016-01-1490
Hans W. Hauschild, Frank Pintar, Dale Halloway, Mark Meyer, Rodney Rudd
Oblique crashes to one corner of the vehicle may not be characteristic of either frontal or side impacts. This research objective was to evaluate occupant response in oblique crashes for a driver, rear adult passenger, and a rear child passenger. Occupant responses and injury potential were evaluated for seating positions as either a far- or near-side occupant. Two crash tests were conducted with a subcompact car. The vehicle’s longitudinal axis was oriented 45 degrees to the direction of travel on a moving platform and pulled into a wall at 56-km/h. The initial point of contact was the right front corner in one test and the left front corner in the other test. Dummies utilized for the seating positions were an adult dummy (50th percentile male HIII and THOR) for the driver position, 5th percentile female HIII for the right-rear position, and a 3-year-old HIII for the left-rear position.
2016-04-05
Technical Paper
2016-01-1511
Jan Vychytil, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
In this work we present the VIRTHUMAN model as a tool for injury risk assessment in pedestrian crash scenarios. It is a virtual human body model formed of a multibody structure and deformable segments to account for the mechanical response of soft tissues. Extensive validation has been performed to ensure its biofidelity. Due to the scaling algorithm implemented, variations in the human population in terms of height, weight, gender and age can be considered. Assessment of the injury risk is done via automatic evaluation software developed. Injury criteria for individual body parts are evaluated using accelerations, forces and displacements of certain points. Injury risk is indicated by the colour of particular body parts in accordance with NCAP rating. A real accident is investigated in this work. A 60-year-old female was hit laterally by a passenger vehicle with the impact velocity of 40 km/h. The accident is reconstructed using VIRTHUMAN as pedestrian representative.
2016-04-05
Technical Paper
2016-01-1492
Ming Shen, Haojie Mao, Binhui Jiang, Feng Zhu, Xin Jin, Liqiang Dong, Suk Jae Ham, Palani Palaniappan, Clifford Chou, King Yang
To predict the injuries of child pedestrians and occupants in traffic incidents, finite element (FE) modeling has become a common research tool. Currently, there was no whole-body FE model for 10-year-old (10 YO) children. This paper introduces the development of two 10 YO whole-body pediatric FE models (named CHARM-10) representing a pedestrian and an occupant postures with sufficient anatomic details and reasonable biofidelity. The geometric data was obtained from medical images and the key dimensions were compared to literature data. Component-level sub-models were built and validated against experimental results of post mortem human subjects (PMHS). After the integration of the sub-models, the whole-body pedestrian model (standing) was assembled and a positioning procedure was then conducted to transform it into the occupant model (seated). The two FE models have shown reasonable responses in whole-body impact simulations.
2016-04-05
Technical Paper
2016-01-1450
Peter Vertal, Hermann Steffan
The objective of this work is to test the potential benefit of active pedestrian protection systems. The tests are based on real fatal accidents with passenger cars that were not equipped with active safety systems. Tests have been conducted in order to evaluate what the real benefit of the active safety system would be, and not to gain only a methodological prediction. The testing procedure was the first independent testing in the world which was based on real fatal pedestrian accidents. The aim of the tests is to evaluate the effectiveness of the Volvo pedestrian detection system. The in-depth accident database ZEDATU contains about 300 fatal pedestrian traffic accidents in urban areas. Eighteen cases of pedestrians hit by the front end of a passenger vehicle were extracted from this database. Cases covering an average traffic scenario have been reconstructed to obtain detailed model situations for testing.
2016-04-05
Technical Paper
2016-01-1455
John Gaspar, Timothy Brown, Chris Schwarz, Susan Chrysler, Pujitha Gunaratne
In 2010 more than 32,500 fatalities and over 2.2 million injuries occurred in automobile accidents, not to mention the immense economic impact on our society. Two of the four most frequent types of crashes are rear-end and lane change crashes. In 2011, rear-end crashes accounted for approximately 28% of all crashes while lane change crashes accounted for approximately 9%. In order to develop effective crash avoidance systems, we investigate incorporating driver response models to actuate the systems in a timely manner. Good models of driver behavior will support the development of algorithms that can detect normal and abnormal behavior as well as warning systems that are tuned to issue useful alerts that are not perceived as false, or nuisance, alerts by the driver. This paper documents a study on the NADS-1 driving simulator to support the development of such driver behavior modeling. Several scenario events were designed to fill in gaps left by previous crash research.
2016-01-06
Standard
J3047_201601
This recommended practice will promote a temperature and duration guideline that mitigates the risk of thermal injuries to the heated seat user. In addition, recommendations are established to indicate to the user when the heater is operating, and warnings that should be included in the vehicle literature.
2015-11-17
Journal Article
2015-32-0714
Yuji Arai, Makoto Hasegawa, Takeshi Harigae
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
2015-11-17
Technical Paper
2015-32-0705
Takanobu Fujimura
Due to environmental problems, number of small vehicles with fuel efficiency increases. Since the small vehicles have small deformation space, it is difficult for them to achieve good crashworthiness at a frontal impact accident. Small deformation space usually yields high vehicle deceleration to absorb kinetic energy of the vehicle. The high vehicle deceleration may produce high occupant deceleration and lead to high occupant injury value. For example, North America, Japan and Europe specify head and chest injury value at vehicle's frontal collision. Those injury values tend to be improved if vehicle deceleration decreases. Deceleration of small vehicle with a little deformation space must be adjusted in order to prevent increase of the occupant injury value. A vehicle deceleration is expressed by 9, 18 or 36 discrete variables. A vehicle, an occupant and restraint systems such as seat belts are modeled by masses and a spring to simulate a frontal collision.
2015-10-21
Standard
J3047_201510
This recommended practice will promote a temperature and duration guideline that mitigates the risk of thermal injuries to the heated seat user. In addition, recommendations are established to indicate to the user when the heater is operating, and warnings that should be included in the vehicle literature.
2015-09-29
Technical Paper
2015-01-2868
John Woodrooffe, Daniel Blower
Abstract This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
2015-04-14
Technical Paper
2015-01-0564
Sung Wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
Abstract In a car accident which is involving pedestrians, head injuries occur very frequently as the head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate the pedestrian injury, and car manufacturers are trying to meet the criterion by changing the design and/or materials.. However, there are some difficulties in the windshield impact test, e.g. a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful results from single test and thus, tests should be executed several times. In this study, a lab-scale windshield impact test was performed using a modified instrumented dart impact (IDI) tester. Tests were carried out by switching test conditions such as the impact speed, the size of the head form and the specimen thickness.
2015-04-14
Technical Paper
2015-01-1451
Anand Sai Gudlur, Theresa Atkinson
Abstract The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
2015-04-14
Technical Paper
2015-01-1469
Yan Wang, Taewung Kim, Yibing Li, Jeff Crandall
Abstract Multibody human models are widely used to investigate responses of human during an automotive crash. This study aimed to validate a commercially available multibody human body model against response corridors from volunteer tests conducted by Naval BioDynamics Laboratory (NBDL). The neck model consisted of seven vertebral bodies, and two adjacent bodies were connected by three orthogonal linear springs and dampers and three orthogonal rotational springs and dampers. The stiffness and damping characteristics were scaled up or down to improve the biofidelity of the neck model against NBDL volunteer test data because those characteristics were encrypted due to confidentiality. First, sensitivity analysis was performed to find influential scaling factors among the entire set using a design of experiment.
2015-04-14
Journal Article
2015-01-1470
Takahiro Isshiki, Atsuhiro Konosu, Yukou Takahashi
Abstract Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
2015-04-14
Technical Paper
2015-01-1443
Morteza Seidi, Marzieh Hajiaghamemar, James Ferguson, Vincent Caccese
Abstract Falls in the elderly population is an important concern to individuals and in the healthcare industry. When the head is left unprotected, head impact levels can reach upwards of 500 g (gravitational acceleration), which is a level that can cause serious injury or death. A protective system for a fall injury needs to be designed with specific criteria in mind including energy protection level, thickness, stiffness, and weight among others. The current study quantifies the performance of a protective head gear design for persons prone to falls. The main objective of this paper is to evaluate the injury mitigation of head protection gear made from a patented system of polyurethane honeycomb and dilatant materials. To that end, a twin wire fall system equipped with a drop arm that includes a Hybrid-III head/neck assembly was used. The head was instrumented with an accelerometer array.
2015-04-14
Technical Paper
2015-01-1447
Hirotoshi Ishikawa, Kunihiro Mashiko, Tetsuyuki Matsuda, Koichi Fujita, Asuka Sugano, Toru Kiuchi, Hirotsugu Tajima, Masaaki Yoshida, Isao Endou
Abstract Event Data Recorders (EDRs) record valuable data in estimating the occupant injury severity after a crash. Advanced Automatic Collision Notification (AACN) with the use of EDR data will determine the potential extent of injuries to those involved in motor vehicle accidents. In order to obtain basic information in injury estimation using EDR data, frontal collisions for 29 vehicles equipped with EDRs were analyzed as a pilot study by retrieving the EDR data from the accident vehicles and collecting the occupant injury data from the database of an insurance company. As a result, the severity of occupant injury was closely related to the Delta V recorded on an EDR. However, there were several cases in which the predicted injury level was overestimated or underestimated by the Delta V. Therefore, caution is required when predicting the level of injury in frontal collisions based upon the Delta V alone.
Viewing 1 to 30 of 2193

Filter

  • Range:
    to:
  • Year: