Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2176
2015-09-17 ...
  • September 17-18, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Side impact crashes account for approximately twenty-six percent of all motor vehicle fatal crashes, second only to frontal crashes, according to a report by the National Highway Transportation and Safety Administration (NHTSA). While car companies and suppliers continue to develop new technologies that make vehicles safer, NHTSA rolled out updated safety regulations (FMVSS 214) based on new research studies, making vehicle safety design more and more complex. This seminar is designed to familiarize participants with the engineering principles behind vehicle and restraint designs for occupant safety.
2015-04-29 ...
  • April 29-May 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 26-28, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Safety continues to be one of the most important factors in motor vehicle design, manufacture and marketing. This seminar provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this seminar will enable attendees to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
2015-04-14
Technical Paper
2015-01-1479
Adria Ferrer, Eduard Infantes
In September 2009 the National Highway Traffic Safety Administration (NHTSA) published a report that investigated the incidence of fatalities to belted non-ejected occupants in frontal crashes involving late-model vehicles. The report concluded that after exceedingly severe crashes, the largest number of fatalities occurred in crashes involving poor structural engagement between the vehicle and its collision partner, such as corner impacts, oblique crashes, or impacts with narrow objects. In response to these findings, NHTSA designed and developed a test procedure intended to mitigate the risk of injuries and fatalities related to motor vehicle crashes involving poor structural engagement. This research demonstrated that an offset impact between a moving deformable barrier (RMDB) and a stationary vehicle at a 15º angle can reproduce vehicle crush, occupant kinematics, and risk of injury seen in vehicle-to-vehicle crashes.
2015-04-14
Technical Paper
2015-01-1447
Hirotoshi Ishikawa, Kunihiro Mashiko, Tetsuyuki Matsuda, Koichi Fujita, Asuka Sugano, Toru Kiuchi, Hirotsugu Tajima, Masaaki Yoshida, Isao Endou
Automatic Collision Notification (ACN) is spreading in many countries.ACN provides notification in the event of a traffic accident automatically when an automobile's air bags are deployed or when the occupant restraint system is activated. ACN also serves as a diagnostic tool to determine the potential extent of injuries to those involved in motor vehicle incidents. Emergency medical service (EMS) personnel can utilize this information to determine how quickly their services are needed and it can minimize the number of victims who might be transferred to medical facilities mistakenly by the initial triage group. Various Electronic Control Units (ECUs) are equipped in vehicles. Air bag ECUs control the deployment of the air bag system and record various information on an event data recorder (EDR) during collisions. Data on the occupants, vehicles, and collisions recorded in EDR could be used as a parameter for estimating the occupant injury severity in an accident.
2015-04-14
Technical Paper
2015-01-1439
Toshiyuki Yanaoka, Yasuhiro Dokko, Yukou Takahashi
To evaluate vehicle safety performance for Traumatic Brain Injuries (TBIs) in crashes, comprehensive injury criteria is required. Few research results for injury criteria focused on Diffuse Axonal Injury (DAI) in crashes or pedestrian impacts exist. We developed injury criteria based on the rotational rigid body motion of the head for occupant and pedestrian crashes. We used the mid-sized male human head/brain FE model to investigate correlation between injury criteria based on the rotational rigid body motion of the head and intracranial responses related to DAI. The input pulses applied to the skull of the head/brain model were determined from the head acceleration data, and articulated rigid body simulation results of frontal occupant and pedestrian crashes. Results showed low applicability of the injury criteria to pedestrian impacts, presumably due to the maximum rotational velocity occurring before head contact to the vehicle.
2015-04-14
Technical Paper
2015-01-1437
Tony R. Laituri, Raed E. El-Jawahri, Scott Henry, Kaye Sullivan
Various risk curves for head injury potential were assessed theoretically relative to field data. Specifically, two AIS2+ risk curves were studied: the HIC15-based risk curve from Mertz (1997) and the provisional, BRIC-based risk curve from Takhounts et al. (2013). These two risk curves were used to estimate attendant injury potential for belted drivers in full-engagement frontal crashes in the National Automotive Sampling System (NASS). The occupant responses pertaining to those crashes were estimated from representative math models, and the risk curves were used to convert event responses into event risks. The assessment was conducted from two perspectives: aggregate (0-56 kph) and a point-estimate (56 kph, barrier-like). Finally, the point-estimate assessment was supplemented by considering corresponding laboratory tests. The results from HIC15-based risk curve were understated, whereas the results from the BRIC-based risk curve were overstated.
2015-04-14
Technical Paper
2015-01-1490
Tony R. Laituri, Scott Henry, Kaye Sullivan
A study of belted driver injury in various types of frontal impacts in the US field data was conducted. Specifically, subject to the Frontal Impact Taxonomy of Sullivan et al. (2008), injury potential of belted drivers in non-rollover, frontal impacts in the National Automotive Sampling System (NASS) was assessed. The field data pertained to 1985 - 2013 model-year light passenger vehicles in 1995 - 2012 calendar years of NASS. Two levels of injury were considered: AIS2+ and AIS3+. For ease of presentation, we grouped the injury data into lower- or upper-body regions. Frontal impacts were binned into eight taxonomic groups: Full-engagement, Offset, Narrow, Oblique, Side-swipe corner, High/low vert (i.e., over- and under-ride crashes), DZY-No rail (i.e., distributed crashes, but with negligible frame rail involvement), and Other. The results of the survey yielded insights into the distribution of belted-driver injury in NASS.
2015-04-14
Technical Paper
2015-01-1443
Morteza Seidi, Marzieh Hajiaghamemar, James Ferguson, Vincent Caccese
Falls in the elderly population is an important concern to individuals, family, friends, and in the healthcare industry. When the head is left unprotected, head impact levels can reach upwards of 500 g (gravitational acceleration), which is a level that can cause serious injury or death. A protective system for a fall injury needs to be designed with specific criteria in mind including energy protection level, thickness, stiffness, weight, and cost among others. The current study quantifies the performance of a protective head gear design for persons prone to falls. The main objective of this paper is to evaluate the injury mitigation of head protection gear made from a patented system of polyurethane honeycomb and dilatant materials. To that end, a twin wire fall system equipped with a drop arm that includes a Hybrid-III head/neck assembly was used.
2015-04-14
Technical Paper
2015-01-1415
Yasuhiro Matsui, Shoko Oikawa
The number of traffic deaths in Japan decreased over the past 20 years to 4373 in 2013. Among accident types of road-accident fatalities, only cyclist fatalities increased in number from 2012 to 2013, from 563 to 600, an increase of 7%. The Japanese government began assessing the safety performance of car bonnet tops in terms of pedestrian deaths in 2005, but there has been no effective regulation for cyclist protection in Japan. The implementation of countermeasures that reduce the severity of injuries and number of deaths in traffic accidents requires a detailed understanding of the features of cyclist injuries in vehicle-versus-cyclist accidents. The aim of this study is to clarify the circumstances in which cyclists are injured.
2015-04-14
Technical Paper
2015-01-1419
Raymond M. Brach
Numerous algebraic formulas and mathematical models exist for the reconstruction of vehicle speed of a vehicle-pedestrian collision using pedestrian throw distance. Unfortunately a common occurrence is that the throw distance is not known from accident evidence. When this is the case almost all formulas and models lose their utility. The model developed by Han and Brach published in 2001 is an exception because it can reconstruct vehicle speed based on the distance between the rest positions of the vehicle and pedestrian. The Han-Brach model is comprehensive and contains crash parameters such as pedestrian launch angle, height of the center of gravity of the pedestrian at launch, pedestrian-road surface friction, vehicle-road surface friction, road grade angle, etc. This approach provides versatility and allows variations of these variables to be taken into account for investigation of uncertainty.
2015-04-14
Technical Paper
2015-01-1409
Joseph Yoon, Kajetan Kietlinski, Freerk Bosma, Martin Tijssens
These days, we begin to see more vehicles equipped with new active safety systems such as radar/camera system and collision imminent braking (CIB) system, etc. The active safety systems are designed and introduced as a safety system in order to help avoid crashes or mitigate injuries when crashes are unavoidable. However, through some internal study conducted at TASS International, we discovered that there may be a potential risk of increased injuries to the occupant when the activation of the active safety systems is not coordinated with that of the passive safety system. For example, when CIB is activated, it puts the occupant out of position closer to the deploying airbag therefore potentially increase injury risks. This risk is believed to be more severe if the occupant is not belted.
2015-04-14
Technical Paper
2015-01-1451
Anand Sai Gudlur, Theresa Atkinson
ABSTRACT The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years.Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to identify factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
2015-04-14
Technical Paper
2015-01-1462
Seung Jun Yang
Euro-Ncap committee has been adopted overall impact star-grade system after 2009 and strengthening pedestrian protection cut-off score to obtain best impact-star grade until 2016. It is very difficult target to pass enhanced pedestrian cut-off score due to previous method. In this paper, I studied where is pedestrian weak area and why pedestrian injury is so high at that area based on our test result. I compared long-hood, 3 corner pop-up hood and pedestrian air-bag system. Finlly I suggest 3-corner rear-ward hood pop-up system is best method to meet our Impact new target in considering pedestrian protection ability, cost &weight.
2015-04-14
Technical Paper
2015-01-1461
Dietmar Otte
During most pedestrian-vehicle crashes the car front impacts the pedestrian and the whole body wraps around the front shape of the car. Meanwhile the windscreen is tested in NCAP conditions. The severity of injuries is influenced by car impact speed; type of vehicle; stiffness and shape of the vehicle; nature of the front (such as the bumper height, bonnet height and length, windscreen frame); age and height of the pedestrian; and standing position of the pedestrian relative to the vehicle front. The socalled Wrap Around Distance WAD is one of important measurement for the assessment of protection. For the study accidents with pedestrians and bicyclists are used for the analysis, how good is the WAD for injury prediction. GIDAS (German In-Depth-Accident-Study) collects accidents as representative sample of the German accident situation based on in-depth-investigation.
2015-04-14
Technical Paper
2015-01-1469
Yan Wang, Taewung Kim, Yibing Li, Jeff Crandall
The characteristic of neck plays an important role on the kinematics and injury of pedestrian’s neck and head during the impact with vehicle, and the accuracy of the mathematical model affects the analysis results directly. A new mathematical pedestrian model has been developed in University of Virginia (UVA), which combines the advantages of both TNO facet occupant model and the lower extremity with more accuracy of biomechanical characteristics. So in this new pedestrian model, the occupant’s facet neck model developed by TNO is used to evaluate the pedestrian’s kinematics and dynamic response. Since the neck is special developed for occupants, the mechanical characteristics for lateral impact may not as good as that of frontal impact.
2015-04-14
Technical Paper
2015-01-1471
Hiroyuki Asanuma, Yukou Takahashi
Investigation with a pedestrian dummy develops further understanding of real-world pedestrian accidents. Investigating injuries to the pedestrian lower body, biofidelity of the thigh, leg, and pelvis of a pedestrian dummy were improved. Plastic solid shafts, covered by flesh jackets were the thigh and the leg from earlier studies. Biofidelity has been evaluated by means of 3-point bending; however, the inertial properties of these parts were adjusted to mimic a human. Biofidelity of the dummy’s pelvis was evaluated in lateral compression of an isolated pelvis. The dummy tests were performed in only quasi-static condition. This study improves and validates the lower limb and the pelvis of the pedestrian dummy, enhancing injury assessment. These parts were subjected to latero-medial 3-point bending at the deflection rate of 1.5 m/s.
2015-04-14
Technical Paper
2015-01-1467
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Munenori Shinada
Logistic regression analysis for accident cases of NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrians’ lower extremity injury depends on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, age of the pedestrian, and posture of impact. The head injury of a pedestrian is also influenced by the ratio of pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle. The pedestrian population is divided in 3 groups, equivalent to small, medium and large pedestrian w.r.t the pedestrian to BLE height-ratio in order to quantify the degree of influence of different parameters (leg orientation, direction of impact, and running/walking state before crash) on pedestrian injuries. Large adult male FE model (95th %ile male AM95:190 cm and 103 kg) is developed by morphing the JAMA 50th %ile male AM50.
2015-04-14
Journal Article
2015-01-1470
Takahiro Isshiki, Atsuhiro Konosu, Yukou Takahashi
It is anticipated that the currently used legform impact test methods using a legform impactor simulating only a lower limb of a pedestrian, such as the Flexible Pedestrian Legform Impactor (FlexPLI) and the EEVC legform impactor, cannot appropriately evaluate the probability of lower limb injuries of pedestrians in the cases of the collisions with vehicles equipped with high bumpers (high-bumper vehicles). The reason for this limitation is considered to be the lack of the upper body representation. However, the detailed analysis about the effect of the upper body has been limited. The latest legform impact test method using the FlexPLI attempts to compensate for the influences of the upper body by setting the impact height 50 mm higher than that of an actual pedestrian. It is anticipated that this compensation is not effective in collisions with high-bumper vehicles, however, the ineffectiveness of the compensation has not been clarified.
2015-04-14
Technical Paper
2015-01-0264
Jeya Padmanaban
Abstract This study examined the Consumer Product Safety Commission (CPSC) Death Certificate file to identify frequency and rate of accidental CO poisoning deaths associated with exhaust gases of stationary vehicles in enclosed areas. A comprehensive search was then made to determine whether or not there was an increase in such deaths with the introduction of “smart keys” (available as standard equipment beginning in 2004). For 2000-2011 CY, the CPSC file contained 4,760 death certificate records for ICD-10 code X47 (accidental poisoning by exposure to other gases and vapors). The manual review of narratives for these records covered 2004-2011 and found 1,553 CO poisoning deaths associated with vehicle exhaust, including 748 for enclosed areas. For these 748 incidents, information on victim and location was then identified, and an exhaustive effort was undertaken to determine whether the vehicles involved were equipped with rotary or smart keys.
2015-04-14
Technical Paper
2015-01-0564
Sung Wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
In a car accident involving pedestrians, head injury occurs very frequently as head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate pedestrian injury and car manufacturers are trying to meet the criterion and lightweight at the same time. However, there are some difficulties in the windshield impact test like a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful result from single test and thus, test should be done several times. In this study, lab-scale windshield impact test is done by using modified Instrumented dart impact (IDI) tester. Test was carried out by switching test conditions like impact speed, size of the headform and specimen thickness.
2015-03-10
Technical Paper
2015-01-0024
Jaehaeng Yoo
Abstract For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
2015-01-14
Technical Paper
2015-26-0160
Adria Ferrer, Stefanie de Hair, Oliver Zander, Rikard Fredriksson, Swen Schaub, Frederic Nuss, Marie Caspar
Abstract Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more efficient and reliable safety systems. This paper reflects the related work carried out within the AsPeCSS project. The results summarized out of virtual and physical tests provide valuable information for further development. 1168 virtual and 120 physical tests were carried out with adult and child pedestrian headform as well as upper and lower legform impactors representatives of 4 different vehicle front geometries in a wide range of impact speeds, angles and locations. This test matrix was based on previous work carried out within the AsPeCSS project.
2014-11-01
Book
This title carries the papers developed for the 2014 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Head/brain biomechanics • Thorax, spine, and pelvis biomechanics • Overlap/angled frontal crash testing and real-world performance • Pedestrian and cyclist injury factors and testing • Rollover and side-impact crashes and computational modeling
2014-04-01
Technical Paper
2014-01-0485
Toshiyuki Yanaoka, Yasuhiro Dokko
Abstract The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC.
2014-04-01
Technical Paper
2014-01-0515
Tushar Baviskar, Jagadish Mahadevaiah, Vijay Shankar Iyer, Mark Neal
Abstract EEVC WG17 Upper Leg impactors have been used to assess the risk of pedestrian upper leg injuries with respect to regulatory and consumer metric rating requirements. The paper compares the femur injury responses between the finite element models of the EEVC WG17 Upper Leg impactor, the FlexPLI and the 50th percentile male GM/UVa pedestrian model on two sample vehicle architectures, for a sedan and a sports utility vehicle. The study shows that the peak femur load and maximum bending moment response are higher in the EEVC WG17 Upper Leg impactor than the FlexPLI and the human body model. Variation studies are carried out to study the influence of impact location on the vehicle, impactor knee height, additional upper body mass and human body model size on the femur injury responses.
2014-04-01
Technical Paper
2014-01-0520
Yukou Takahashi, Miwako Ikeda
Abstract The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model. The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH.
2014-04-01
Technical Paper
2014-01-0493
William R. Bussone, Michael Prange
Abstract Few studies have investigated pediatric head injury mechanics with subjects below the age of 8 years. This paper presents non-injurious head accelerations during various activities for young children (2 to 7 years old). Eight males and five females aged 2-7 years old were equipped with a head sensor package and head kinematics were measured while performing a series of playground-type activities. The maximum peak resultant accelerations were 29.5 G and 2745 rad/s2. The range of peak accelerations was 2.7 G to 29.5 G. The range of peak angular velocities was 4.2 rad/s to 22.4 rad/s. The range of peak angular accelerations was 174 rad/s2 to 2745 rad/s2. Mean peak resultant values across all participants and activities were 13.8 G (range 2.4 G to 13.8 G), 12.8 rad/s (range 4.0 rad/s to 12.8 rad/s), and 1375 rad/s2 (range 105 rad/s2 to 1375 rad/s2) for linear acceleration, angular velocity, and angular acceleration, respectively.
2014-04-01
Technical Paper
2014-01-0489
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Muthukumar Muthanandam, Jeyabharath Manoharan, Satheesh Narayanan
Abstract A comprehensive analysis was performed to evaluate the effect of BMI on different body region injuries for side impact. The accident data for this study was taken from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). It was found that the mean BMI values for driver and front passengers increases over the years in the US. To study the effect of BMI, the range was divided into three groups: Thin (BMI<21), Normal (BMI 24-27) and Obese (BMI>30). Other important variables considered for this study were model year (MY1995-99 for old vehicles & MY2000-08 for newer vehicles), impact location (side-front F, side-center P & side-distributed Y) and direction of force (8-10 o'clock for nearside & 2-4 o'clock for far-side). Accident cases involving older occupants above 60 years was omitted in order to minimize the bone strength depreciation effect. Results of the present study indicated that the Model Year has influence on lower extremity injuries.
2014-04-01
Journal Article
2014-01-0752
Kumar B. Kulkarni, Jaisankar Ramalingam, Ravi Thyagarajan
It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA) phase, to quickly predict occupant injury risk due to under-body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. In a prior study [16], an extensive parametric study was conducted in a systematic manner so as to create look-up tables or automated software tools that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of a suitable blast load parameter. The primary objective of this paper is to quantitatively evaluate the accuracy of using such a tool in lieu of building a detailed model for simulation and occupant injury assessment.
2014-04-01
Journal Article
2014-01-0518
Bingbing Nie, Qing Zhou, Yong Xia, Jisi Tang
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Viewing 1 to 30 of 2176

Filter

  • Range:
    to:
  • Year: