Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2162
2015-09-17 ...
  • September 17-18, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Side impact crashes account for approximately twenty-six percent of all motor vehicle fatal crashes, second only to frontal crashes, according to a report by the National Highway Transportation and Safety Administration (NHTSA). While car companies and suppliers continue to develop new technologies that make vehicles safer, NHTSA rolled out updated safety regulations (FMVSS 214) based on new research studies, making vehicle safety design more and more complex. This seminar is designed to familiarize participants with the engineering principles behind vehicle and restraint designs for occupant safety.
2015-04-29 ...
  • April 29-May 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 26-28, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Safety continues to be one of the most important factors in motor vehicle design, manufacture and marketing. This seminar provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this seminar will enable attendees to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
2015-04-14
Technical Paper
2015-01-1451
Venkat Anand Sai GUDLUR, Theresa Atkinson
ABSTRACT The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years.Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to identify factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
2015-04-14
Technical Paper
2015-01-1415
Yasuhiro Matsui, Shoko Oikawa
The number of traffic deaths in Japan decreased over the past 20 years to 4373 in 2013. Among accident types of road-accident fatalities, only cyclist fatalities increased in number from 2012 to 2013, from 563 to 600, an increase of 7%. The Japanese government began assessing the safety performance of car bonnet tops in terms of pedestrian deaths in 2005, but there has been no effective regulation for cyclist protection in Japan. The implementation of countermeasures that reduce the severity of injuries and number of deaths in traffic accidents requires a detailed understanding of the features of cyclist injuries in vehicle-versus-cyclist accidents. The aim of this study is to clarify the circumstances in which cyclists are injured.
2015-04-14
Technical Paper
2015-01-1419
Raymond M. Brach
Numerous algebraic formulas and mathematical models exist for the reconstruction of vehicle speed of a vehicle-pedestrian collision using pedestrian throw distance. Unfortunately a common occurrence is that the throw distance is not known from accident evidence. When this is the case almost all formulas and models lose their utility. The model developed by Han and Brach published in 2001 is an exception because it can reconstruct vehicle speed based on the distance between the rest positions of the vehicle and pedestrian. The Han-Brach model is comprehensive and contains crash parameters such as pedestrian launch angle, height of the center of gravity of the pedestrian at launch, pedestrian-road surface friction, vehicle-road surface friction, road grade angle, etc. This approach provides versatility and allows variations of these variables to be taken into account for investigation of uncertainty.
2015-04-14
Technical Paper
2015-01-0564
Sung wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
In a car accident involving pedestrians, head injury occurs very frequently as head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate pedestrian injury and car manufacturers are trying to meet the criterion and lightweight at the same time. However, there are some difficulties in the windshield impact test like a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful result from single test and thus, test should be done several times. In this study, lab-scale windshield impact test is done by using modified Instrumented dart impact (IDI) tester. Test was carried out by switching test conditions like impact speed, size of the headform and specimen thickness.
2015-01-14
Technical Paper
2015-26-0160
Adria Ferrer, Stefanie de Hair, Oliver Zander, Rikard Fredriksson, Swen Schaub, Frederic Nuss, Marie Caspar
Abstract Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more efficient and reliable safety systems. This paper reflects the related work carried out within the AsPeCSS project. The results summarized out of virtual and physical tests provide valuable information for further development. 1168 virtual and 120 physical tests were carried out with adult and child pedestrian headform as well as upper and lower legform impactors representatives of 4 different vehicle front geometries in a wide range of impact speeds, angles and locations. This test matrix was based on previous work carried out within the AsPeCSS project.
2014-11-01
Book
This title carries the papers developed for the 2014 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Head/brain biomechanics • Thorax, spine, and pelvis biomechanics • Overlap/angled frontal crash testing and real-world performance • Pedestrian and cyclist injury factors and testing • Rollover and side-impact crashes and computational modeling
2014-04-01
Technical Paper
2014-01-0485
Toshiyuki Yanaoka, Yasuhiro Dokko
Abstract The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC.
2014-04-01
Technical Paper
2014-01-0515
Tushar Baviskar, Jagadish Mahadevaiah, Vijay Shankar Iyer, Mark Neal
Abstract EEVC WG17 Upper Leg impactors have been used to assess the risk of pedestrian upper leg injuries with respect to regulatory and consumer metric rating requirements. The paper compares the femur injury responses between the finite element models of the EEVC WG17 Upper Leg impactor, the FlexPLI and the 50th percentile male GM/UVa pedestrian model on two sample vehicle architectures, for a sedan and a sports utility vehicle. The study shows that the peak femur load and maximum bending moment response are higher in the EEVC WG17 Upper Leg impactor than the FlexPLI and the human body model. Variation studies are carried out to study the influence of impact location on the vehicle, impactor knee height, additional upper body mass and human body model size on the femur injury responses.
2014-04-01
Technical Paper
2014-01-0520
Yukou Takahashi, Miwako Ikeda
Abstract The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model. The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH.
2014-04-01
Technical Paper
2014-01-0493
William R. Bussone, Michael Prange
Abstract Few studies have investigated pediatric head injury mechanics with subjects below the age of 8 years. This paper presents non-injurious head accelerations during various activities for young children (2 to 7 years old). Eight males and five females aged 2-7 years old were equipped with a head sensor package and head kinematics were measured while performing a series of playground-type activities. The maximum peak resultant accelerations were 29.5 G and 2745 rad/s2. The range of peak accelerations was 2.7 G to 29.5 G. The range of peak angular velocities was 4.2 rad/s to 22.4 rad/s. The range of peak angular accelerations was 174 rad/s2 to 2745 rad/s2. Mean peak resultant values across all participants and activities were 13.8 G (range 2.4 G to 13.8 G), 12.8 rad/s (range 4.0 rad/s to 12.8 rad/s), and 1375 rad/s2 (range 105 rad/s2 to 1375 rad/s2) for linear acceleration, angular velocity, and angular acceleration, respectively.
2014-04-01
Technical Paper
2014-01-0489
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Muthukumar Muthanandam, Jeyabharath Manoharan, Satheesh Narayanan
Abstract A comprehensive analysis was performed to evaluate the effect of BMI on different body region injuries for side impact. The accident data for this study was taken from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). It was found that the mean BMI values for driver and front passengers increases over the years in the US. To study the effect of BMI, the range was divided into three groups: Thin (BMI<21), Normal (BMI 24-27) and Obese (BMI>30). Other important variables considered for this study were model year (MY1995-99 for old vehicles & MY2000-08 for newer vehicles), impact location (side-front F, side-center P & side-distributed Y) and direction of force (8-10 o'clock for nearside & 2-4 o'clock for far-side). Accident cases involving older occupants above 60 years was omitted in order to minimize the bone strength depreciation effect. Results of the present study indicated that the Model Year has influence on lower extremity injuries.
2014-04-01
Technical Paper
2014-01-0491
Michael E. Zabala, Nicholas Yang, Stacy Imler, Ke Zhao, Rose Ray
Abstract Three years of data from the Large Truck Crash Causation Study (LTCCS) were analyzed to identify accidents involving heavy trucks (GVWR >10,000 lbs.). Risk of rollover and ejection was determined as well as belt usage rates. Risk of ejection was also analyzed based on rollover status and belt use. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants. These data were further analyzed to determine injury distribution based on factors such as crash type, ejection, and restraint system use. The maximum AIS score (MAIS) was analyzed and each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered for an AIS score of three or greater (AIS 3+). The majority of heavy truck occupants in this study were belted (71%), only 2.5% of occupants were completely or partially ejected, and 28% experienced a rollover event.
2014-04-01
Journal Article
2014-01-0752
Kumar B. Kulkarni, Jaisankar Ramalingam, Ravi Thyagarajan
It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA) phase, to quickly predict occupant injury risk due to under-body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. In a prior study [16], an extensive parametric study was conducted in a systematic manner so as to create look-up tables or automated software tools that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of a suitable blast load parameter. The primary objective of this paper is to quantitatively evaluate the accuracy of using such a tool in lieu of building a detailed model for simulation and occupant injury assessment.
2014-04-01
Journal Article
2014-01-0518
Bingbing Nie, Qing Zhou, Yong Xia, Jisi Tang
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
2014-04-01
Technical Paper
2014-01-0548
Baeyoung Kim, Kangwook Lee, Jeong Keun Lee, June-Young Song
Abstract The role of CAB is protecting the passenger's head during rollover and side crash accidents. However, the performance of HIC and ejection mitigation has trade-off relation, so analytical method to satisfy the HIC and ejection mitigation performance are required. In this study, 3 types of CAB were used for ejection mitigation analysis, drop tower analysis and SINCAP MDB analysis. Impactor which has 18kg mass is impacting the CAB as 20KPH velocity at six impact positions for ejection mitigation analysis. In drop tower analysis, impactor which has 9kg mass is impacting the CAB as 17.7KPH velocity. Acceleration value was derived by drop tower analysis and the tendency of HIC was estimated. Motion data of a vehicle structure was inserted to substructure model and the SID-IIS 5%ile female dummy was used for SINCAP MDB analysis. As a result, HIC and acceleration values were derived by MDB analysis.
2014-04-01
Technical Paper
2014-01-0494
Bethany L. Suderman, Irving S. Scher, Randal P. Ching
Abstract Previous studies have shown that occupant kinematics in lateral impacts are different for near- and far-side occupants. Additionally, injuries to far-side occupants in high-speed lateral impacts have been better documented in the scientific literature; few studies have looked at low-speed far-side occupants. The purpose of this study was to determine the risk of lumbar spine injury for restrained and unrestrained far-side occupants in low- to moderate- speed lateral impacts. The NASS/CDS database was queried for far-side occupants in lateral impacts for different levels of impact severity (categorized by Delta-V): 0 to 8 km/h, 8 to 16 km/h, 16 to 24 km/h and 24 to 32 km/h. To further understand the lumbar spine injuries sustained by occupants in real-world impacts, far-side lateral impact tests with ATDs from the NHTSA Biomechanics Test Database were used to estimate lumbar loads in generic far-side sled tests.
2014-04-01
Technical Paper
2014-01-0490
Ellen L. Lee, Patrick J. Lee, Wilson C. Hayes
Abstract Non-neutral posture prior to impact is one of many factors thought to influence the onset and severity of whiplash associated disorders following low speed, rear impact collisions. The Graphical Articulated Total Body Model (GATB) is one simulation tool that has been used to investigate injury risk in rear impact collisions, though the model has not previously been validated for occupants in non-neutral postures. The main purpose of this study was to evaluate the performance of the GATB model during low speed rear impacts in out-of-position postures, by comparing simulations to previously published volunteer head accelerations. Twelve simulations (four occupants in each of three postures) were performed. Results demonstrated good agreement between the GATB simulations and the volunteer kinematics, with a mean error for peak head acceleration of 3.4 ± 13%.
2014-04-01
Journal Article
2014-01-0517
Dietmar Otte, Birgitt Wiese
This study deals with the risk of injury to the bicyclist's head and the benefits of wearing a bicycle helmet in terms of reduction of injury severity or even injury avoidance. The accident data of 4,245 injured bicyclists as a randomized sample, collected by a scientific research team within the GIDAS project (German In-Depth Accident Study) were analyzed. Given that head injuries result in approximately 40% of bicycle-related crashes, helmet usage provides a sensible first-level approach for improving incidence and severity of head injuries. The effectiveness of the bicycle helmet was examined using descriptive and multivariate analysis for 433 bicyclists with a helmet and 3,812 bicyclists without a helmet. Skull fractures, severe brain injuries and skull base fractures were up to 80% less frequent for bicyclists wearing a helmet.
2014-03-24
Technical Paper
2014-01-2028
Ludek Hyncik, Jaroslav Manas, Jan Spicka, Stanislav Spirk, Ludek Kovar
Abstract Traffic accidents cause one of the highest numbers of severe injuries in the whole population. The numbers of deaths or seriously injured citizens prove that traffic accidents and their consequences are still a serious problem to be solved. A lot of effort is devoted to both passive and active safety systems development. The transportation standards usually define safety requirements by regulations (e.g. ECE-R94, 96/79/EC and ECE-R95, 96/27/EC in Europe) with specific dummies for children to be used. The dummies include hardware sensors for monitoring accelerations, loads and other signals and each dummy is developed for a specific scenario, but there are limitations of these dummies, such as only a specific age or calibration just for a specific test.
2013-10-15
Journal Article
2013-32-9173
John W. Zellner, Scott A. Kebschull, R. Michael Van Auken
An updated evaluation of the effects on predicted injuries of an example crush protective device (CPD) proposed for application to All-Terrain Vehicles (ATVs) is described. As in previous evaluations, this involved extending and applying the test and analysis methods defined in ISO 13232 (2005) for motorcycle impacts, to evaluate the effects of the example CPD in a sample of simulated ATV overturn events. Updated modeling refinements included lowering the energy levels of the simulated overturn events; accounting for potential mechanical/ traumatic (compressive) asphyxia mechanisms; refining and calibrating the force-deflection characteristics of helmet, head, legs and soil so as to reduce potential over-prediction of head and leg injuries; and calibrating the simulation against aggregated injury distributions from actual accidents.
Viewing 1 to 30 of 2162

Filter

  • Range:
    to:
  • Year: