Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3737
2017-09-28 ...
  • September 28-29, 2017 (8:30 a.m. - 4:30 p.m.) - Fort Worth, Texas
Training / Education Classroom Seminars
Aircraft accident and incident investigations should be supported by all engineering disciplines and departments involved with design, manufacturing, certification, and field operations. For individuals called upon to serve as advisors or technical representatives to official aircraft accident investigation (AAI) teams, an understanding of aircraft accident investigation and reconstruction methodology and processes is critical to success in this supportive role. This two-day seminar will begin with the basic requirements for conducting proper accident investigations, including investigative philosophies and procedures.
2017-07-18 ...
  • July 18, 2017 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
The field of vehicular accident reconstruction has become increasingly specialized. For automotive engineers involved in crash reconstruction and analysis, a knowledge of basic accident reconstruction principles and techniques is essential, but often insufficient to answer the sophisticated questions posed by design engineers, regulators, and lawyers. This seminar takes participants beyond the basics of accident reconstruction to physical models and analysis techniques that are unique to the reconstruction of single-vehicle rollover crashes.
2017-04-11 ...
  • April 11-13, 2017 (2 Sessions) - Live Online
  • November 7-9, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Although many have an idea of what the term “driver distraction” means, there is no common definition within the research community. Additionally, there are many studies that have investigated the topic, but with varying and sometimes conflicting results. What should be made of these discrepancies? This four-hour web seminar will provide an overview of driver distraction (predominantly electronic devices): the problem; how to define it; the current state of research and how to critically evaluate that research to make informed decisions; and the effectiveness of state laws and fleet policies to reduce it.
2017-04-04
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2017-03-28
Technical Paper
2017-01-1380
Richard Young
Abstract Dingus and colleagues recently estimated the crash odds ratios (ORs) for secondary tasks in the Strategic Highway Research Program Phase 2 (SHRP 2) naturalistic driving study. Their OR estimate for hand-held cell phone conversation (Talk) was 2.2, with a 95% confidence interval (CI) from 1.6 to 3.1. This Talk OR estimate is above 1, contrary to previous estimates below 1. A replication discovered two upward biases in their analysis methods. First, for video clips with exposure to a particular secondary task, Dingus and colleagues selected clips not only with exposure to that task, but often with concurrent exposure to other secondary tasks. However, for video clips without exposure to that task, Dingus and colleagues selected video clips without other secondary tasks. Hence, the OR estimate was elevated simply because of an imbalanced selection of video clips, not because of risk from a particular secondary task.
2017-03-28
Technical Paper
2017-01-0407
Fei Huo, Huyao Wu
Abstract Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
2017-03-28
Technical Paper
2017-01-1458
Tack Lam, B. Johan Ivarsson
Abstract Disc herniations in the spine are commonly associated with degenerative changes, and the prevalence increases with increasing age. With increasing number of older people on U.S. roads, we can expect an increase in clinical findings of disc herniations in occupants involved in rear impacts. Whether these findings suggest a causal relationship is the subject of this study. We examined the reported occurrence of all spine injuries in the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database from 1993 to 2014. There were over 4,000 occupants that fit the inclusion criteria. The findings in this study showed that, in the weighted data of 2.9 million occupants, the most common spine injury is an acute muscle strain of the neck, followed by strain of the low back. The delta-V of a rear impact is a reliable indicator of the rate of acute cervical strain in occupants exposed to such impacts.
2017-03-28
Technical Paper
2017-01-1419
Smruti Panigrahi, Jianbo Lu, Sanghyun Hong
Abstract Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
2017-03-28
Technical Paper
2017-01-1473
Ling Zheng, Yinan Gao, Zhenfei Zhan, Yinong Li
Several surrogate models such as radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The multiquadric radial basis function is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
2017-03-28
Technical Paper
2017-01-1393
Georges Beurier, Michelle Cardoso, Xuguang Wang
Abstract A new experimental seat was designed to investigate sitting biomechanics. Previous literature suggested links between sitting discomfort and shear force, however, research on this topic is limited. The evaluation of sitting discomfort derived from past research has been primarily associated with seat pressure distribution. The key innovative feature of the experimental seat is not only pressure distribution evaluation but shear forces as well. The seat pan of the experimental seat compromises of a matrix of 52 cylinders, each equipped with a tri-axial force sensor, enabling us to measure both normal and tangential forces. The position of each cylinder is also adjustable permitting a uniform pressure distribution underneath the soft tissue of the buttocks and thighs. Backrest, armrests, seat pan and flooring are highly adjustable and equipped with forces sensors to measure contact forces.
2017-03-28
Technical Paper
2017-01-1425
Brian Jones, Michael Calabro, Justin Brink, Scott Swinford
In minor inline rear-end accidents, vehicle damage is the primary tangible indicator of impact severity or vehicle change in velocity (ΔV). A technique for calculating change in velocity based on vehicle damage for collinear impacts involves application of the Momentum Energy Restitution (MER) method. Offset inline minor rear-end impact testing, wherein minimal vehicle bumper or contact surface engagement occurs, has not been readily published to date. Thus, instrumented offset inline rear-end impacts were performed utilizing a 1997 Ford F-150 Pickup, 1996 Kia Sephia, and 1995 Chrysler LeBaron GTC to determine if the MER method can accurately calculate a vehicle’s ΔV when collinear contact does not occur. Vehicle engagement involved 5.1 cm to 76.2 cm of overlap with impact speeds ranging between 0.7 m/s and 4 m/s.
2017-03-28
Journal Article
2017-01-1472
Niels Pasligh, Robert Schilling, Marian Bulla
Abstract Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection.
CURRENT
2017-02-24
Standard
J1698/1_201702
This Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. The document is intended to govern data element definitions, to provide a minimum data element set,and to specify EDR record format as applicable for light-duty motor vehicle Original Equipment applications.
2017-01-10
Technical Paper
2017-26-0003
Chandrashekhar Thorbole
Abstract The seatbelt is the primary restraint device that increases the level of occupant protection in a frontal crash. The belt performance is enhanced by the supplemental restraint provided by the airbag; seat and knee bolster working in combination with this primary restraining device. Small occupants are vulnerable to upper neck injuries when seated very close to the steering wheel. A lot of research and data availability for this situation ultimately led to the development of countermeasures capable of reducing upper neck loading. However, no data or research is available on the lower neck dynamic response of a small occupant primarily a 5th percentile female seated away from the steering wheel. MADYMO (Mathematical Dynamic Modeling), a biodynamic code is employed to validate a standard NHTSA (National Highway Traffic Safety Administration) frontal impact rigid barrier test with a 5th percentile ATD (Anthropomorphic Test Device) in the driver position.
2017-01-10
Technical Paper
2017-26-0002
Sitikantha Padhy, Pradeep Agrawal, Yoginder Yadav
Abstract Most of the time in motor vehicle accidents, the driver of the vehicle (especially driver of the larger vehicle in case of collision involving multiple vehicles) is held responsible for rash and negligent driving. But in-depth study and statistics, points out several external or environmental factors playing crucial role in these unfortunate incidents. In some cases these factors directly influence an accident/crash and in some cases these factors influence the behavior pattern of the driver, which increases risk of unsafe practices. Based on the real time data collected by ADAC on the Gurgaon - Jaipur Stretch of NH-8 and others parts of India, some of the factors that directly or indirectly influences the drivers behaviour, are illustrated in this paper.
2017-01-10
Technical Paper
2017-26-0349
Rushil Batra, Sahil Nanda, Shubham Singhal, Ranganath Singari
Abstract This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
2016-11-09
Book
This title includes the technical papers developed for the 2016 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Head/brain biomechanics • Thorax, spine, and pelvis biomechanics • Foot-Ankle Biomechanics • Injury and effect of directional impacts • Pedestrian and cyclist injury factors and testing • Commercial truck and pedestrian accidents factors and testing
2016-11-07
Technical Paper
2016-22-0002
Sven A. Holcombe, Stewart C. Wang, James B. Grotberg
This study investigates the isolated effect of rib shape on the mechanical characteristics of ribs subjected to multiple forms of loading. It aims to measure the variation in stiffness due to shape that is seen throughout the population and, in particular, provide a tool for researchers to better understand the influence of shape on resulting stiffness. A previously published six-parameter shape model of the central axis of human ribs was used. It has been shown to accurately model the overall rib path using intrinsic geometric properties such as size, aspect ratio, and skewness, through shapes based on logarithmic spirals with high curvature continuity. In this study the model was fitted to 19,500 ribs from 989 adult female and male CT scans having demographic distributions matching the US adult population. Mechanical loading was simulated through a simplified finite element model aimed at isolating rib shape from other factors influencing mechanical response.
2016-11-07
Technical Paper
2016-22-0004
Rakshit Ramachandra, Yun-Seok Kang, John H. Bolte, Alena Hagedorn, Rodney Herriott, Jason A. Stammen, Kevin Moorhouse
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
2016-11-07
Technical Paper
2016-22-0011
David Gorman, Ebram Handy, Sikui Wang, Annette L. Irwin
Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05).
2016-11-07
Technical Paper
2016-22-0015
Matthew L. Davis, Bharath Koya, Jeremy M. Schap, F. Scott Gayzik
To mitigate the societal impact of vehicle crash, researchers are using a variety of tools, including finite element models (FEMs). As part of the Global Human Body Models Consortium (GHBMC) project, comprehensive medical image and anthropometrical data of the 5th percentile female (F05) were acquired for the explicit purpose of FEM development. The F05-O (occupant) FEM model consists of 981 parts, 2.6 million elements, 1.4 million nodes, and has a mass of 51.1 kg. The model was compared to experimental data in 10 validation cases ranging from localized rigid hub impacts to full body sled cases. In order to make direct comparisons to experimental data, which represent the mass of an average male, the model was compared to experimental corridors using two methods: 1) post-hoc scaling the outputs from the baseline F05-O model and 2) geometrically morphing the model to the body habitus of the average male to allow direct comparisons.
2016-11-07
Technical Paper
2016-22-0016
Annette L. Irwin, Greg Crawford, David Gorman, Sikui Wang, Harold J. Mertz
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
2016-11-07
Technical Paper
2016-22-0018
Harold J. Mertz, Annette L. Irwin, Priya Prasad
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
2016-04-12
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2016-04-05
Technical Paper
2016-01-1511
Jan Vychytil, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this work we present the VIRTHUMAN model as a tool for injury risk assessment in pedestrian crash scenarios. It is a virtual human body model formed of a multibody structure and deformable segments to account for the mechanical response of soft tissues. Extensive validation has been performed to ensure its biofidelity. Due to the scaling algorithm implemented, variations in the human population in terms of height, weight, gender and age can be considered. Assessment of the injury risk is done via automatic evaluation software developed. Injury criteria for individual body parts are evaluated using accelerations, forces and displacements of certain points. Injury risk is indicated by the colour of particular body parts in accordance with NCAP rating. A real accident is investigated in this work. A 60-year-old female was hit laterally by a passenger vehicle with the impact velocity of 40 km/h. The accident is reconstructed using VIRTHUMAN as pedestrian representative.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
Viewing 1 to 30 of 3737

Filter

  • Range:
    to:
  • Year: