Viewing 1 to 30 of 3659
2015-11-17 ...
  • November 17-18, 2015 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
Aircraft accident and incident investigations should be supported by all engineering disciplines and departments involved with design, manufacturing, certification, and field operations. For individuals called upon to serve as advisors or technical representatives to official aircraft accident investigation (AAI) teams, an understanding of aircraft accident investigation and reconstruction methodology and processes is critical to success in this supportive role. This two-day seminar will begin with the basic requirements for conducting proper accident investigations, including investigative philosophies and procedures.
2015-05-06 ...
  • May 6-8, 2015 (2 Sessions) - Live Online
  • November 3-5, 2015 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Although many have an idea of what the term “driver distraction” means, there is no common definition within the research community. Additionally, there are many studies that have investigated the topic, but with varying and sometimes conflicting results. What should be made of these discrepancies? This four-hour web seminar will provide an overview of driver distraction (predominantly electronic devices): the problem; how to define it; the current state of research and how to critically evaluate that research to make informed decisions; and the effectiveness of state laws and fleet policies to reduce it.
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2015-04-20 ...
  • April 20-22, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • September 9-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 7-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. EDR’s are not new, but are becoming more prevalent in part due to a new federal regulation. 49 CFR, Part 563, which affects vehicles produced after September 30, 2012, will result in a standardized and publicly available EDR in 90% of new vehicles.
This session addresses the development of anthropomorphic test devices (ATDs such as THOR, WorldSID, FlexPLI), computational human models (such as GHBMC), injury prediction methodologies (such as BRIC), and laboratory test procedures. Presentations will focus on efforts to understand the human response to impact and associated injury risk in frontal, oblique, and lateral loading conditions.
Technical Paper
Ludek Hyncik, Jan Spicka, Jaroslav Manas, Jan Vychytil
The paper contributes to the field of vehicle safety technology by the virtual approach using biomechanical human body models. The goal of the paper is to exploit the previously developed scaling algorithm to create several virtual human bodies of a given age and proportions, to validate them and to assess their stature dependent response. Based on a validated reference model, the previously developed scaling algorithm develops virtual human body models for given height, mass, age and gender. Particular body segments are scaled based on the anthropometrical database concerning the body dimensions taking also percentiles into account. The body stiffness is driven by age dependent flexindex. Several virtual models of human bodies representing particular cadavers were generated via the automatic scaling algorithm. The frontal sled test response of the models was successfully compared to the experimental data.
Technical Paper
Thomas Lich, Girikumar Kumaresh, Joerg Moennich
Around one in four deaths that occurs on the road in India involves a motorcyclist, according to Ministry of road transport and highways, Government of India 2012. Nearly 26 % of the fatalities (~ 33 873 people) are from powered two wheelers which constitute the highest contributor for fatal accidents in India. European Transport Safety Council (ETSC) analysis shows the risk of a motorcyclist having a fatal accident is 20 times greater than for a car driver traveling the same route. An investigation conducted by Bosch based on the RASSI accident database (Road Accident Sampling System for India), revels interesting facts of Indian powered two wheeler (PTW) riders behaviour and their braking patterns during the precrash phase of the accident. This research is undertaken to evaluate the benefit of modern vehicle safety systems like a PTW Antilock-Braking System (ABS) which are essential to avoid accidents.
Technical Paper
Hasan M. Naqvi, Geetam Tiwari
Large number of road accidents i.e. 4,90,383 is reported in India during 2012, resulting 1,38,258 persons killed. Out of total accidents, major share of accidents i.e. about 30% and 35.3% number of persons killed are observed on National Highways (NHs), which constitute about 2% of total road network (83,097 km) in India, but carries about 40% of traffic. 45% (37,510 km) of NHs in India comprises of two lanes and more than 65% of NHs are two lane or less. Road accidents being multi-disciplinary in nature involves attention of multiple departments such as Highways Authority, Police, Motor Vehicles, Automobile Manufacturers, NGOs, etc. Majority of the departments in India dealing with road accidents give low priority to tackle them. Owing to these reasons and spurt in growth of motor vehicle population in India, road accidents are not reduced significantly despite improvement in NHs (widening of carriageway and riding quality).
Technical Paper
Alok Anand, Pratap Daphal, Pratyush Khare
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event time domain. A case study has been explained in this paper to highlight the methodology.
Technical Paper
Girikumar Kumaresh, Thomas Lich, Moennich Joerg
Abstract In the year of 2012 in India the total number of accidents with injuries is registered by Ministry of Road Transport and Highway with 490,383 out of which injured people are 509,667 and fatalities are 138,258 [1]. Nearly 17% of the fatalities are occupants of passenger cars which constitute the second highest contributor for fatal accidents in India [1]. In order to understand the root causes for car accidents in India, Bosch accident research carried out a study based on in-depth accidents collected in India. Apart from other accident contributing factors e.g. infrastructure the driver behaviour and his actions few milliseconds just prior to the crash is an extremely important and a key valuable data for the understanding of accident causation. Further on it supports also the development of modern automotive safety functions. Hence this research was undertaken to evaluate the benefit of the state-of-the art vehicle safety systems known as Antilock Braking System (ABS).
Outlook for autonomous driving includes cloud Connectivity with off-board data and services and among vehicles will be crucial in maintaining safety and security in future autonomous vehicles. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner. SAE 2014 Convergence preview Interest in advanced driver-assistance technologies is surging, with automotive engineers and decision makers at OEMs and suppliers working feverishly on the convenience vs. safety trade-off and other electronics-related challenges. Cooled EGR shows benefits for gasoline engines Exhaust gas recirculation systems now in use on diesel engines are used mainly to meet emissions regulations. In gasoline engines, they are an appealing way to meet ever more stringent fuel-economy standards
Technical Paper
Jeffrey K. Ball, Mark Kittel, Trevor Buss, Greg Weiss
Abstract Trucking fleets are increasingly installing video event recorders in their vehicles. The video event recorder system is usually mounted near the vehicle's rear view mirror, and consists of two cameras: one looking forward and one looking towards the driver. The system also contains accelerometers that record lateral and longitudinal g-loading, and some may record vehicle speed (in mph) based on GPS positions. The unit constantly monitors vehicle acceleration and speed, and also records video. However, the recorded data is only stored when a preset acceleration threshold is met. The primary use of the system is to assist fleets with driver training and education, but the recorded data is also being used as a tool to reconstruct accidents. By integrating the accelerometer data, the vehicle speed and distance traveled during the event can be calculated.
Training / Education Classroom Seminars
Automotive crash reconstruction is a process carried out with the specific purpose of estimating in both a qualitative and quantitative manner how a crash occurred. Reconstructions are based on data collected during the crash and physical evidence gathered during a crash investigation. To some extent, testimonial evidence is also used. Whether a crash is between two vehicles, a vehicle and pedestrian or a vehicle and a barrier, specific crash segments, classified as pre-impact, impact and post-impact motion often are reconstructed separately.
WIP Standard
This SAE Standard is intended to be used as a guide for manufacturers and users of general purpose industrial machines to provide a reasonable degree of protection for personnel during normal operation and servicing. This document excludes skid steers which are covered by SAE J1388. Avoidance of accidents also depends upon the care exercised by such persons (see SAE J153). Inclusion of this standard instate, federal, or any laws or regulations where flexibility of revision is lacking is discouraged.
The guidelines for operator and bystander protection in this recommended practice apply to towed, semimounted or mounted flail mowers and flail power rakes when powered by a propelling tractor or machine of at least 15 kw (20 hp), intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries and along roadways and highways. The use of the word "industrial" is not to be confused with "in-plant industrial equipment". This document does not apply to: 1. Turf care equipment primarily designed for personal use, consumption or enjoyment of a consumer in or around a permanent or temporary household or residence. 2. Machines designed primarily for agricultural purposes but which may be used for industrial use. 3. Self powered or self propelled mowers or mowing machines.
This SAE Standard establishes performance criteria for towed, semi-mounted, or mounted and arm type rotary mowers with one or more blade assemblies of 77.5 cm blade tip circle diameter or over, mounted on a propelling tractor or machine of at least 15 kW, intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries, and along roadways and highways. The use of the word “industrial” is not to be confused with “in-plant industrial equipment.” This document does not apply to: a. Turf care equipment primarily designed for personal use, consumption, or enjoyment of a consumer in or around a permanent or temporary household or residence. b. Equipment designed primarily for agricultural purposes but which may be used for industrial use. c. Self-powered or self-propelled mowers or mowing machines.
Technical Paper
Frederico A. A. Barbieri, Vinicius de Almeida Lima, Leandro Garbin, Joel Boaretto
Abstract Brazil presents a very diverse road and traffic conditions and due to several factors the number of truck accidents is very high. Inside truck accidents group, the one that causes the highest number of losses and fatalities is the rollover crash and understanding rollover dynamics is very important to prevent such events. The diversity of cargo vehicles arrangements requires a detailed study regarding the dynamic behavior these vehicle combinations in order to increase operation safety. The same tractor unit can be used with different types and numbers of trailers and/or semi-trailers, each one with different suspension configurations. These truck combinations have distinct dynamic performances that need evaluation. In this sense, this work presents a first phase study on the dynamic behavior of different types of cargo vehicle configuration. A 6×2 tractor is combined with a two distinct grain semi-trailer with different types of suspension: pneumatic and leaf spring.
Rollover collisions present special problems to practitioners who analyze them for the purposes of reconstructing the crash sequence, as well as, those who are examining occupant injury mechanics. As someone who has been involved in the analysis of rollover crashes for over 20 years I would enjoy discussing the complexities of rollover analysis with anyone who is interested.
Technical Paper
Alan R. Wedgewood, Patrick Granowicz, Zhenyu Zhang
Abstract Materials used in automotive components play a key role in providing crash safety to passengers and pedestrians. DuPont's lightweight hybrid material technology, which combines injection molded fiber reinforced plastics with drape molded woven composite materials, provides safety engineers with stiff energy absorbing alternatives. In an effort to validate the hybrid material's crash performance while avoiding expensive crash testing, numerical tools and methodologies are applied in evaluation of a hybrid composite test beam. Multi-scale material models capturing nonlinear strain-rate dependency, anisotropic characteristics, and failure criteria, are calibrated on a fiber reinforced plastic and a woven fabric. The fiber orientation and warp/weft angles were extracted from injection and drape molding simulation.
Journal Article
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Technical Paper
Ishika Zonina Towfic, Jennifer Johrendt
Abstract The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity.
Viewing 1 to 30 of 3659


  • Range:
  • Year: