Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3666
2015-11-17 ...
  • November 17-18, 2015 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
Aircraft accident and incident investigations should be supported by all engineering disciplines and departments involved with design, manufacturing, certification, and field operations. For individuals called upon to serve as advisors or technical representatives to official aircraft accident investigation (AAI) teams, an understanding of aircraft accident investigation and reconstruction methodology and processes is critical to success in this supportive role. This two-day seminar will begin with the basic requirements for conducting proper accident investigations, including investigative philosophies and procedures.
2015-11-06 ...
  • November 6, 2015 (8:30 a.m. - 4:30 p.m.) - Mesa, Arizona
Training / Education Classroom Seminars
The field of vehicular accident reconstruction has become increasingly specialized. For automotive engineers involved in crash reconstruction and analysis, a knowledge of basic accident reconstruction principles and techniques is essential, but often insufficient to answer the sophisticated questions posed by design engineers, regulators, and lawyers. This seminar takes participants beyond the basics of accident reconstruction to physical models and analysis techniques that are unique to the reconstruction of single-vehicle rollover crashes.
2015-11-05 ...
  • November 5, 2015 (8:00 a.m. - 5:00 p.m.) - Mesa, Arizona
Training / Education Classroom Seminars
The reconstruction and analysis of motorcycle crashes requires a specialized set of skills and knowledge beyond those required for typical four wheel vehicles. This seminar takes participants beyond the basics of crash reconstruction to physical models and analysis techniques that are unique to the reconstruction of motorcycle crashes, providing learners with a comprehensive summary of applicable reconstruction techniques.
2015-11-03 ...
  • November 3-5, 2015 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Although many have an idea of what the term “driver distraction” means, there is no common definition within the research community. Additionally, there are many studies that have investigated the topic, but with varying and sometimes conflicting results. What should be made of these discrepancies? This four-hour web seminar will provide an overview of driver distraction (predominantly electronic devices): the problem; how to define it; the current state of research and how to critically evaluate that research to make informed decisions; and the effectiveness of state laws and fleet policies to reduce it.
2015-09-09 ...
  • September 9-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 7-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
EDR’s are not new, but are becoming more prevalent in part due to a new federal regulation. 49 CFR, Part 563, which affects vehicles produced after September 30, 2012, will result in a standardized and publicly available EDR in 90% of new vehicles. Accident Reconstructionists frequently have trouble reconciling EDR data with other data sources, and improvements in ABS technology result in fewer tire marks visible at the scene of crashes to allow calculation of pre-crash speeds without an EDR.
2015-06-22 ...
  • June 22-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 2-4, 2015 (8:30 a.m. - 4:30 p.m.) - Mesa, Arizona
Training / Education Classroom Seminars
Automotive crash reconstruction is a process carried out with the specific purpose of estimating in both a qualitative and quantitative manner how a crash occurred. Reconstructions are based on data collected during the crash and physical evidence gathered during a crash investigation. To some extent, testimonial evidence is also used. Whether a crash is between two vehicles, a vehicle and pedestrian or a vehicle and a barrier, specific crash segments, classified as pre-impact, impact and post-impact motion often are reconstructed separately.
2015-05-07
Standard
J2876_201505
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
2015-05-07
Standard
J2980_201505
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive electrical and electronic (E/E) systems. This activity is required by ISO 26262-3:2011 [1], and it is intended that the process and results herein are consistent with ISO 26262:2011 [1]. The technical focus of this document is on vehicle motion control systems. It is limited to passenger cars weighing up to 3.5 metric tons. Furthermore, the scope of this recommended practice is limited to collision-related hazards. ISO 26262:2011 [1] has a wider scope than SAE J2980, covering other functions and accidents (not just motion control or collisions as in SAE J2980).
2015-04-23
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2015-04-14
Technical Paper
2015-01-0499
Nagarjun Jawahar, Sangamitra Manoharan, Harish Chandran
Abstract Material energy and cost minimization has been the need of the hour off late. The work aims at designing a micro gripping device which has suitable application in bio medical industry; specifically surgical operation of comminuted fracture using CAE software. Being a combination of an inverter and a clip, the ability of the compliant mechanism to be used as a gripper as well as positioner constitutes its rare versatility. The compliant mechanisms are single-piece structures, having no backlash as in case of rigid-body, jointed mechanisms and comparatively cheaper to manufacture. Designed in MATLAB R2008a using the concept of topological optimization, modeled in AutoCAD Mechanical 2011 and analyzed in ANSYS Workbench 13.0; the mechanism is initially designed with a geometrical advantage of 2. The MATLAB code which is an improvement of the 99 line code written by O.
2015-04-14
Technical Paper
2015-01-1442
Wolfgang Sinz, Jörg Moser, Christoph Klein, Robert Greimel, Karsten Raguse, Class Middendorff, Christina Steiner
Abstract Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
2015-04-14
Journal Article
2015-01-1489
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
Abstract Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
2015-04-14
Journal Article
2015-01-1470
Takahiro Isshiki, Atsuhiro Konosu, Yukou Takahashi
Abstract Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
2015-04-14
Technical Paper
2015-01-1707
Ravi Ranjan, Shivaswaroop Parameswaraiah
Abstract 1 Glare is subjective and can either cause disability or discomfort in eyes. Thus glare during driving especially at night is a serious concern and must be addressed. No commercial product exists to counter the glare, though there had been some academic progress in realizing a solution. The paper presents two promising technologies that help in reducing the oncoming vehicle glare. The system comprises of a vision based identification of glare source. A pixelated transparent film/glass with dynamically controllable transmittance is placed between the driver and source. By changing the transparency locally, glare is avoided without affecting the overall visibility. The paper details on lab results and feasibility of two proposed solution i.e. Use of a matrix of electro chromic films such that each element can be individually controlled and use of transparent LCD such that each pixel is controlled for its transparency.
2015-04-14
Technical Paper
2015-01-1421
Dennis Turriff, David J. King, James Bertoch
Abstract Vehicle rollovers generate complicated damage patterns as a result of multiple vehicle-to-ground contacts. The goal of this work was to isolate and characterize specific directional features in coarse- and fine-scale scratch damage generated during a rollover crash. Four rollover tests were completed using stock 2001 Chevrolet Trackers. Vehicles were decelerated and launched from a rollover test device to initiate driver's side leading rolls onto concrete and dirt surfaces. Gross vehicle damage and both macroscopic and microscopic features of the scratch damage were documented using standard and macro lenses, a stereomicroscope, and a scanning electron microscope (SEM). The most evident indicators of scratch direction, and thus roll direction, were accumulations of abraded material found at the termination points of scratch-damaged areas.
2015-04-14
Technical Paper
2015-01-1450
Jeremy Daily, Andrew Kongs, James Johnson, Jose Corcega
Abstract The proper investigation of crashes involving commercial vehicles is critical for fairly assessing liability and damages, if they exist. In addition to traditional physics based approaches, the digital records stored within heavy vehicle electronic control modules (ECMs) are useful in determining the events leading to a crash. Traditional methods of extracting digital data use proprietary diagnostic and maintenance software and require a functioning ECM. However, some crashes induce damage that renders the ECM inoperable, even though it may still contain data. As such, the objective of this research is to examine the digital record in an ECM and understand its meaning. The research was performed on a Detroit Diesel DDEC V engine control module. The data extracted from the flash memory chips include: Last Stop Record, two Hard Brake events, and the Daily Engine Usage Log. The procedure of extracting and reading the memory chips is explained.
2015-04-14
Technical Paper
2015-01-1415
Yasuhiro Matsui, Shoko Oikawa
Abstract Fatal injuries suffered by cyclists in vehicle-versus-cyclist accidents are investigated to provide information for the introduction of safety countermeasures. We analyzed characteristics of cyclist injuries in real fatal accidents and compared them with severity levels of head injury in impact tests against a road surface. In the accident analyses, we investigated the main body regions whose injuries led to fatalities using a macro vehicle-cyclist accident database of the Institute for Traffic Accident Research and Data Analysis of Japan. Using data from 2009 to 2013, we investigated the frequency of cyclist fatalities by gender, age group, vehicle speed, and the source of fatal head injury (impact with the vehicle or road surface). Results indicated that head injuries are the most common cause of cyclist fatalities in car-cyclist accidents.
2015-04-14
Journal Article
2015-01-0612
Weiguo Zhang, Zeyu Ma, Ankang Jin, James Yang, Yunqing Zhang
Abstract Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
2015-04-14
Technical Paper
2015-01-1418
Shane Richardson, Nikola Josevski, Andreas Sandvik, Tandy Pok, Tia Lange Orton, Blake Winter, Xu Wang
Abstract Pedestrian throw distance can be used to evaluate vehicle impact speed for wrap or forward projection type pedestrian collisions. There have been multiple papers demonstrating relationships between the impact speed of a vehicle and the subsequent pedestrian throw distance. In the majority of instances, the scenarios evaluated focused on the central width of the vehicle impacting the pedestrian. However, based on investigated pedestrian collisions, the location where the pedestrian has engaged with the vehicle can and does significantly influence the throw distance (and projection) and subsequent impact speed analysis. PC-Crash was used to simulate multiple pedestrian impacts at varying speeds and vehicle impact locations, creating pedestrian throw distance impact speed contour plots. This paper presents the pedestrian throw distance impact speed contour plots for a range of nine vehicle types.
2015-04-14
Collection
This technical paper collection focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes
2015-04-01
Journal Article
2015-01-9151
Eric S. Winkel, Daniel E. Toomey, Robert Taylor
Abstract Thoracolumbar vertebral fractures are most commonly due to compressive loading modes and associated with falls from height. Two injury metrics are generally referenced for assessing the potential for compressive thoracolumbar injury; the Dynamic Response Index (DRI) and the compressive load measured between the pelvis and lumbar spine using the Code of Federal Regulations (CFR) title 49 part 572 subpart B anthropomorphic test device (ATD). This study utilizes an ATD to investigate the injury mitigation potential of a variety of seat cushions during vertical impact in an unrestrained seated posture. ATD responses and DRI are reported for 65 vertical impacts with and without cushions from heights between 4 and 80 inches. The cushions investigated reduced ATD peak pelvic acceleration 63 +/− 11% and compressive lumbar load 42 +/− 9% on average.
2015-03-26
WIP Standard
J3093
This Information Report addresses the design and performance specifications for a generic buck to be used in full-scale vehicle to pedestrian tests conducted to evaluate pedestrian dummy performance. Specifically, the buck is designed to mimic the impact response of the front end of a sedan within the small family car vehicle class during a collision with a pedestrian. The goal is to develop a generic buck with simplified geometry and a limited number of components made of clearly defined and readily available engineering materials to facilitate manufacturing and reproducibility. To ensure performance of the buck, it is specified that the buck mimics the peak crush, absorbed energy, and peak force corresponding to a sedan within the small family car vehicle class during a pedestrian impact.
2015-03-10
Technical Paper
2015-01-0024
Jaehaeng Yoo
Abstract For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
2015-03-10
Technical Paper
2015-01-0027
Tia Lange Gaffney, Blake Winter, Arky Elston, Andreas Sandvik, Tandy Pok, Shane Richardson, Nikola Josevski
Abstract When a vehicle is involved in a collision, often a question arises regarding the vehicle's pre-crash velocity. In modern vehicles, velocity data can typically be extracted from the vehicle's Electronic Data Recorder (EDR) via OEM or aftermarket diagnostic tools. However, many modern vehicles - and particularly vehicles operated and/or manufactured in Australia - are not equipped with downloadable EDRs. In these cases, the pre-crash velocity must be calculated based on physical forensic evidence. One method for estimating collision velocity is the crush-energy method, wherein the vehicle is modeled as a spring system. The velocity is then estimated based on the vehicle-specific stiffness properties and on the post-collision crush profile. The vehicle-specific stiffness properties must be derived from a comparable staged crash test. Often, no such crash test exists.
2015-03-03
Standard
J2949_201503
This Information Report documents the signal noise discovered with the 1996 NHTSA regulated version of the 45 degree foot, and defines a recommended solution to resolve the problem.
2015-02-26
WIP Standard
J3074
This procedure establishes a recommended practice for performing a Lumbar Flexion test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past there has not been any tests to document the performance of Hybrid III 50th lumbar.
Viewing 1 to 30 of 3666

Filter

  • Range:
    to:
  • Year: