Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3322
2015-06-15 ...
  • June 15-16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Car companies and suppliers continue to develop new technologies that make vehicles safer and regulatory agencies continue to update safety regulations based on new research studies, making vehicle safety design more and more complex. This seminar covers the mechanics of frontal crashes and how vehicle structures, vehicle restraint systems, and vehicle interiors affect occupant safety. It also describes details of how CAE tools work in the simulation of frontal crashes. The goal of the course is to familiarize participants with engineering principles behind vehicle and restraint designs for occupant safety.
2015-05-20
WIP Standard
J1855
This SAE Recommended Practice describes the method for safe deployment of air bag modules in vehicles equipped with electrically actuated air bag systems for the purpose of disposal. It is intended to provide a procedure which does not require significant technical expertise, is easy to operate, and is readily available, to be used by automobile dismantlers or vehicle shredders to deploy air bag modules prior to automobile reclamation.
2015-04-23
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2015-04-23
Event
This session includes the latest research on Event Data Recorders (EDRs) equipped in passenger cars, light trucks, and commercial vehicles (heavy trucks and motorcoaches). Emphasis is placed on the application, interpretation and use of EDRs in the investigation of motor vehicle crashes.
2015-04-23
Event
This session presents papers related to advancing the science of occupant safety in vehicle rear, rollover and side impact collisions.
2015-04-23
Event
Paper offers advancing the science of occupant safety in vehicle collisions are welcome.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-14
Collection
The Occupant Restraints technical paper collection highlights papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-14
Technical Paper
2015-01-1330
Yoshiyuki Tosa, Hiroyuki Mae
Abstract The objective of this study is to accurately predict the dynamic strain on the windshield caused by the deployment of the airbag in a short term without vehicle tests. The following assumption is made as to the dynamic pressure distribution on the windshield: The deployment of the airbag is fast enough to ignore spatial difference in the patterns of the pressure time histories. Given this assumption, significant parameters of the dynamic pressure distribution are as follows: 1) the distribution of the maximum pressure during contact between the airbag and the windshield, and 2) the characteristic of the force time histories applied to the windshield by the deploying airbag. In this study, the prediction method consists of a simplified airbag deployment test and an FE simulation. The simple deployment test was conducted to measure the peak pressure distribution between the airbag and a flat panel simulating the windshield.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
Abstract Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
2015-04-14
Technical Paper
2015-01-1480
Seung Kwon Cha, Jong Heon Lee, Un Ko, Tae Hoon Song, HangChul Ko, YangGi Lee
Abstract Recently, the wagon for European has been developed. The characteristic of this vehicle is to have a capability of large luggage space. Therefore the passenger needs to be protected from injuries by sudden inflow of baggage from luggage room. This is also a requirement of EU regulation (ECE R-17[4]). Barrier Net[1, 2, 3] to small size wagon has been adopted for the first time based on advanced foreign supplier's technology. This reality still gives us the burden of high cost and royalty expenditure. The objective of this study is to overcome these restrictions, especially for patent circumvention and secure the new design concept which is entirely independent of the present system in addition to cost effectiveness.
2015-04-14
Technical Paper
2015-01-1492
Kazunobu Ogaki, Takayuki Kawabuchi, Satoshi Takizawa
Abstract The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
2015-04-14
Technical Paper
2015-01-1488
Adam G. M. Cook, Moustafa El-Gindy, David Critchley
Abstract This work investigates a multi-objective optimization approach for minimizing design parameters for Front Underride Protection Devices (FUPDs). FUPDs are a structural element for heavy vehicles to improve crashworthiness and prevent underride in head-on collision with another vehicle. The developed dsFUPD F9 design for a Volvo VNL was subjected to modified ECE R93 testing with results utilized in the optimization process. The optimization function utilized varying member thickness to minimize deformation and system mass. Enhancements to the function were investigated by introducing variable materials and objectifying material cost. Alternative approaches for optimization was also needed to be explored. Metamodel-based and Direct simulation optimization strategies were compared to observe there performance and optimal designs.
2015-04-14
Technical Paper
2015-01-1452
Kathleen DeSantis Klinich, Kyle Boyle, Laura Malik, Miriam Manary, Jingwen Hu
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, creating a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. CRS were marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers' directions, and the reference points of each CRS component were measured to document the installed orientation.
2015-04-14
Technical Paper
2015-01-1456
Mani Ayyakannu, Latha Subbiah, Mohammed Syed
Abstract Automotive knee bolster requirements have changed substantially in recent years due to expanded safety requirements. A three-piece cellular structural knee bolster assembly has been evolved to meet this matrix of requirements while being extremely lightweight (as low as 0.7 Kg), low in cost and easily tunable to work in various car/truck programs. The energy absorber is the primary component of this assembly and allows for a range of occupant sizes and weights to be restrained (from 50 Kg/152 cm 5th percentile female to 100 Kg/188cm 95th percentile male occupants). The evolution of this knee bolster assembly design is described using crush analysis, component testing to validate the crush analysis, instrument panel assembly level analysis with occupant models and sled tests. Steel and aluminum versions of this knee bolster are compared - in terms of weight, cost, design tunability for various crash conditions, structural stiffness etc.
2015-04-14
Technical Paper
2015-01-1457
Aditya Belwadi, Richard Hanna, Audrey Eagle, Daniel Martinez, Julie Kleinert, Eric Dahle
Abstract Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
2015-04-14
Technical Paper
2015-01-1443
Morteza Seidi, Marzieh Hajiaghamemar, James Ferguson, Vincent Caccese
Abstract Falls in the elderly population is an important concern to individuals and in the healthcare industry. When the head is left unprotected, head impact levels can reach upwards of 500 g (gravitational acceleration), which is a level that can cause serious injury or death. A protective system for a fall injury needs to be designed with specific criteria in mind including energy protection level, thickness, stiffness, and weight among others. The current study quantifies the performance of a protective head gear design for persons prone to falls. The main objective of this paper is to evaluate the injury mitigation of head protection gear made from a patented system of polyurethane honeycomb and dilatant materials. To that end, a twin wire fall system equipped with a drop arm that includes a Hybrid-III head/neck assembly was used. The head was instrumented with an accelerometer array.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
Abstract The explicit methods analysis solver LS-DYNA was used to create technology for simulating airbag deployment and plastic airbag lid tear-away in the front passenger seat. The present study clarified the mechanical properties and the transitions in fracture pattern of the material at low temperature plastic this way, an appropriate modeling method was developed and the prediction accuracy of the simulation of airbag lid tear-away on deployment was increased. Tensile testing of the material was carried out where there were differences in thickness of the tear-away section and the fracture characteristics were determined. A material model was created by analyzing changes in fracture characteristics and collapse patterns, taking into consideration the effects of strain and strain rate localization on fracture strain as well as ductile-brittle fracture transition. Next, airbags were subjected to the impactor testing.
2015-04-14
Technical Paper
2015-01-1476
P Selvakumar, Arun Mahajan, R Murasolimaran, C Elango
Abstract Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
Viewing 1 to 30 of 3322

Filter

  • Range:
    to:
  • Year: