Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3323
2015-06-15 ...
  • June 15-16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Car companies and suppliers continue to develop new technologies that make vehicles safer and regulatory agencies continue to update safety regulations based on new research studies, making vehicle safety design more and more complex. This seminar covers the mechanics of frontal crashes and how vehicle structures, vehicle restraint systems, and vehicle interiors affect occupant safety. It also describes details of how CAE tools work in the simulation of frontal crashes. The goal of the course is to familiarize participants with engineering principles behind vehicle and restraint designs for occupant safety.
2015-04-23
Event
Paper offers advancing the science of occupant safety in vehicle collisions are welcome.
2015-04-23
Event
This session presents papers related to advancing the science of occupant safety in vehicle rear, rollover and side impact collisions.
2015-04-23
Event
This session includes the latest research on Event Data Recorders (EDRs) equipped in passenger cars, light trucks, and commercial vehicles (heavy trucks and motorcoaches). Emphasis is placed on the application, interpretation and use of EDRs in the investigation of motor vehicle crashes.
2015-04-23
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-14
Technical Paper
2015-01-1490
Tony R. Laituri, Scott Henry, Kaye Sullivan
A study of belted driver injury in various types of frontal impacts in the US field data was conducted. Specifically, subject to the Frontal Impact Taxonomy of Sullivan et al. (2008), injury potential of belted drivers in non-rollover, frontal impacts in the National Automotive Sampling System (NASS) was assessed. The field data pertained to 1985 - 2013 model-year light passenger vehicles in 1995 - 2012 calendar years of NASS. Two levels of injury were considered: AIS2+ and AIS3+. For ease of presentation, we grouped the injury data into lower- or upper-body regions. Frontal impacts were binned into eight taxonomic groups: Full-engagement, Offset, Narrow, Oblique, Side-swipe corner, High/low vert (i.e., over- and under-ride crashes), DZY-No rail (i.e., distributed crashes, but with negligible frame rail involvement), and Other. The results of the survey yielded insights into the distribution of belted-driver injury in NASS.
2015-04-14
Technical Paper
2015-01-1480
Seung Kwon Cha, Jong Heon Lee, Un Ko, Tae Hoon Song, HangChul Ko, YangGi Lee
This paper focuses on the Barrier net system of the European vehicle(wagon). Recently, Car maker has being developed the wagon for European market. The characteristic of this vehicle is to have a capability of enough luggage space in order to minimize injuries of passengers at the accident. This is also a requirement of EU regulations(ECE R-17). Our company has adopted this system to small size car for the first time dependent on advanced foreign company’s technology. This reality still gives us the burden of high cost and royalty expenditure. Therefore, the objective of this study is to overcome our weak technologies, especially for patent circumvention or new mechanism which is entirely independent with previous system, and cost effectiveness(Barrier Net).
2015-04-14
Technical Paper
2015-01-1476
P Selvakumar, Arun Mahajan, R Murasolimaran, C Elango
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to reduce costs and shorten product development cycle, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. Often correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. This research has the proposal of showing the correlation between simulation and prototype test results of tractor ROPS. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS.
2015-04-14
Technical Paper
2015-01-1460
Massoud Tavakoli, Janet Brelin-Fornari
This study was conducted to explore the effect of various combinations of seatbelt-related safety components on the adult rear passenger involved in a frontal collision. The study was conducted on a 50th male and a 5th female Hybrid III ATD in the rear seat of a mid-sized sedan. Each ATD was seated in an outboard position with 3-point continuous lap-shoulder belts. On these belts were combinations of pretensioners and load limiters. Since the main objective of the test series was to cross-compare the seatbelt configurations, front seats were not included in the buck to avoid the possibility of contact with the front seat, hence avoiding such uncontrollable variables. Nevertheless, there was a short barrier devised to act as a foot-stop for both ATDs. A design of experiment (DOE) was constructed as a full factorial with and without a pretensioner and three types of load limiters. Each ATD was tested with a progressive load limiter (PLL1).
2015-04-14
Technical Paper
2015-01-1456
Mani Ayyakannu, Latha Subbiah, Mohammed Syed
Abstract: Knee Bolster requirements have changed substantially in recent years due to expanded safety requirements. A knee bolster assembly has been evolved to meet this matrix of requirements while being extremely lightweight (as low as 2 lbs), low in cost and easily tunable to work in various car/truck programs. The energy absorber is the primary component of this assembly and allows for a range of occupant sizes and weights to be protected( from a 50 Kg/5ft 5th percentile female to a 100 Kg/6ft 2 in 95th percentile male occupants). The evolution of this knee bolster assembly design is described using crush analysis, component testing to validate the crush analysis, instrument panel assembly level analysis with occupant models and sled tests. Steel and aluminum versions of this knee bolster are compared - in terms of weight, cost, design tunability for various crash conditions, structural stiffness etc.
2015-04-14
Technical Paper
2015-01-1457
Aditya Belwadi, Richard Hanna, Audrey Eagle, Daniel Martinez, Julie Kleinert, Eric Dahle
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the breadth of CRS dimensions so that this balance can be successfully negotiated. Previously this was addressed with the advent of advanced air bag systems, when emphasis was placed on the design and development of surrogate child restraints, which were used, in developing and testing occupant sensing and classification systems. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of any child restraints. This ever-changing target puts pressure on the vehicle manufacturers to keep their vehicle seats and occupant space compatible.
2015-04-14
Technical Paper
2015-01-1452
Kathleen DeSantis Klinich, Kyle Boyle, Laura Malik, Miriam Manary, Jingwen Hu
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, providing a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. Each CRS was marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers’ directions, and the reference points of each CRS component were measured to document the installed orientation.
2015-04-14
Technical Paper
2015-01-0739
John Patalak, Thomas Gideon
Abstract Over the last decade large safety improvements have been made in crash protection for motorsports drivers. It has been well established that in side and rear impacts the driver seat provides the primary source for occupant retention and restraint. Beginning in the 2015 season, NASCAR®'s (National Association for Stock Car Auto Racing, Inc) Sprint Cup Series will require driver seats which have all seat belt restraint system anchorage locations integrated internally to the seat with a minimum of seven anchorage locations. This paper describes the development of the quasi-static test for the seat integrated seat belt restraint system portion of the NASCAR Seat Submission and Test Protocol Criteria. It reviews the methodology used to develop the testing including the developmental dynamic sled tests.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
The National Highway Transportation Safety Administration (NHTSA) issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate ejection mitigation countermeasures that are intended to help minimize the likelihood of a complete and/or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this new safety ruling is a deployable restraint; specifically a Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an improved simulation response, with respect to the FMVSS 226 test requirements of a SABIC. The simulated SABIC system is intended for a generic SUV and potentially also for a generic Truck type vehicle.
2015-04-14
Technical Paper
2015-01-0407
Timothy W. Skszek, Matthew Zaluzec, Jeff Conklin, David Wagner
Title: Multi-Material Lightweight Vehicle (MMLV) Project Overview Authors: Magna International: Tim Skszek & Jeff Conklin Ford Motor Company: Matthew Zaluzec and David Wagner Abstract: The Multimaterial Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance, occupant safety and utility of the baseline production vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-1 vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1-liter 3 cylinder engine, resulting in a significant environmental benefit and fuel reduction.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
Abstract Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
2015-04-14
Technical Paper
2015-01-1485
Jiri Kral, Theresa Kondel, Mark Morra, Stephen Cassatta, Peter Bidolli, Patrick Stebbins, Vikas Joshi
Abstract A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
2015-04-14
Technical Paper
2015-01-1483
Anindya Deb, N Shivakumar, Clifford Chou
Abstract Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
2015-04-14
Technical Paper
2015-01-1472
Roberto Arienti, Carlo Cantoni, Massimiliano Gobbi, Giampiero Mastinu, Mario Pennati, Giorgio Previati
Abstract The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
2015-04-14
Technical Paper
2015-01-1455
Kenshi Torikai, Hitoshi Higuchi, Kazuhiro Seki
Abstract The reaction force of a traditional passenger airbag tends to reduce after the initial inflation and before contact with the occupant, since the vent structure discharging the internal gas is always open. A potential means to prevent this drop in the airbag reaction force includes the addition of a variable vent structure which keeps the vent hole closed until occupant contact to maintain the airbag internal pressure and then opens to vent gas after the contact. However, variable vent structures may involve issues from a complicated structure due to additional parts in its construction. The goal of this study was to develop a simplified variable vent structure. A slit-type vent structure was investigated. This structure incorporates no additional parts to a conventional airbag with a hole-type vent. Static deployment tests and impactor tests were conducted to measure the effect of the slit-type vent structure and to compare it with the conventional airbag.
2015-04-14
Technical Paper
2015-01-1451
Anand Sai Gudlur, Theresa Atkinson
Abstract The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Viewing 1 to 30 of 3323

Filter

  • Range:
    to:
  • Year: