Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3329
2015-06-15 ...
  • June 15-16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Car companies and suppliers continue to develop new technologies that make vehicles safer and regulatory agencies continue to update safety regulations based on new research studies, making vehicle safety design more and more complex. This seminar covers the mechanics of frontal crashes and how vehicle structures, vehicle restraint systems, and vehicle interiors affect occupant safety. It also describes details of how CAE tools work in the simulation of frontal crashes. The goal of the course is to familiarize participants with engineering principles behind vehicle and restraint designs for occupant safety.
2015-04-23
Event
The Biomechanics session presents new research on automotive occupant kinematics, human injury biomechanics, and human tolerance in an automotive environment. This includes new methodologies in the study of human injury, studies of human interaction with occupant protection systems, technological advances in physical and virtual anthropomorphic test devices, and other experimental, analytical and modeling studies on the biomechanics of human injury.
2015-04-23
Event
This session includes the latest research on Event Data Recorders (EDRs) equipped in passenger cars, light trucks, and commercial vehicles (heavy trucks and motorcoaches). Emphasis is placed on the application, interpretation and use of EDRs in the investigation of motor vehicle crashes.
2015-04-23
Event
Paper offers advancing the science of occupant safety in vehicle collisions are welcome.
2015-04-23
Event
This session presents papers related to advancing the science of occupant safety in vehicle rear, rollover and side impact collisions.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-22
Event
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers on injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance are accepted for this session.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
The Occupant Restraints Session invites papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-21
Event
This session focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2015-04-14
Technical Paper
2015-01-1483
Anindya Deb, N Shivakumar, Clifford Chou
Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such a foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
2015-04-14
Technical Paper
2015-01-1485
Jiri Kral, Theresa Kondel, Mark Morra, Stephen Cassatta, Peter Bidolli, Patrick Stebbins, Vikas Joshi
A new apparatus for testing modern safety belt systems was developed. Its design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in crash environment. Good test repeatability was observed, which allows comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on subsystem level as well as for validation of CAE models of safety belts used in simulations of occupant response to crash.
2015-04-14
Technical Paper
2015-01-1488
Adam G. M. Cook, Moustafa El-Gindy, David Critchley
This work investigates the multi-objective optimization methods for Front Underride Protection Devices (FUPDs) using varying meta-modeling and direct optimization techniques, while implementing several materials and minimizing cost of the design. The developed dsFUPD F9 design for a Volvo VNL was subjected to a modified ECE R93 quasi-static loading to objectify deformations. A developed application was needed to objectify the cost as a third target objective to minimize with mass and deformation of the design. NSGA-II, SPEA-II genetic algorithms and adaptive simulated annealing optimization methods were under investigation in combination with three meta-modeling techniques; Feedforward Neural Network, Radial Basis Function Network, and Kriging. Leapfrog LFOPC algorithm hybridized forms of genetic algorithms and adaptive simulated annealing was also investigated.
2015-04-14
Technical Paper
2015-01-1492
Kazunobu Ogaki, Takayuki Kawabuchi, Satoshi Takizawa
We test the mid-size sedan according to NHTSA Oblique test to assess the occupant protection and to provide possible design changes to improve the oblique collision performance. This test result predicted high potential injury for BrIC, chest deflection, and lower extremities. Injury reductions could likely be achieved through optimization of the restraint devices. We focus to reduce the lower extremity injury. Traditionally, lower extremity injuries are often mitigated by reducing the intrusion of the cabin’s dashboard lower region; however, this type of design change can lead to a significant increase in vehicle weight. Increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment.
2015-04-14
Technical Paper
2015-01-1490
Tony R. Laituri, Scott Henry, Kaye Sullivan
A study of belted driver injury in various types of frontal impacts in the US field data was conducted. Specifically, subject to the Frontal Impact Taxonomy of Sullivan et al. (2008), injury potential of belted drivers in non-rollover, frontal impacts in the National Automotive Sampling System (NASS) was assessed. The field data pertained to 1985 - 2013 model-year light passenger vehicles in 1995 - 2012 calendar years of NASS. Two levels of injury were considered: AIS2+ and AIS3+. For ease of presentation, we grouped the injury data into lower- or upper-body regions. Frontal impacts were binned into eight taxonomic groups: Full-engagement, Offset, Narrow, Oblique, Side-swipe corner, High/low vert (i.e., over- and under-ride crashes), DZY-No rail (i.e., distributed crashes, but with negligible frame rail involvement), and Other. The results of the survey yielded insights into the distribution of belted-driver injury in NASS.
2015-04-14
Technical Paper
2015-01-1480
Seung Kwon Cha, Jong Heon Lee, Un Ko, Tae Hoon Song, HangChul Ko, YangGi Lee
This paper focuses on the Barrier net system of the European vehicle(wagon). Recently, Car maker has being developed the wagon for European market. The characteristic of this vehicle is to have a capability of enough luggage space in order to minimize injuries of passengers at the accident. This is also a requirement of EU regulations(ECE R-17). Our company has adopted this system to small size car for the first time dependent on advanced foreign company’s technology. This reality still gives us the burden of high cost and royalty expenditure. Therefore, the objective of this study is to overcome our weak technologies, especially for patent circumvention or new mechanism which is entirely independent with previous system, and cost effectiveness(Barrier Net).
2015-04-14
Technical Paper
2015-01-1443
Morteza Seidi, Marzieh Hajiaghamemar, James Ferguson, Vincent Caccese
Falls in the elderly population is an important concern to individuals, family, friends, and in the healthcare industry. When the head is left unprotected, head impact levels can reach upwards of 500 g (gravitational acceleration), which is a level that can cause serious injury or death. A protective system for a fall injury needs to be designed with specific criteria in mind including energy protection level, thickness, stiffness, weight, and cost among others. The current study quantifies the performance of a protective head gear design for persons prone to falls. The main objective of this paper is to evaluate the injury mitigation of head protection gear made from a patented system of polyurethane honeycomb and dilatant materials. To that end, a twin wire fall system equipped with a drop arm that includes a Hybrid-III head/neck assembly was used.
2015-04-14
Technical Paper
2015-01-1476
P Selvakumar, Arun Mahajan, R Murasolimaran, C Elango
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to reduce costs and shorten product development cycle, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. Often correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. This research has the proposal of showing the correlation between simulation and prototype test results of tractor ROPS. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS.
2015-04-14
Technical Paper
2015-01-1472
Roberto Arienti, Carlo Cantoni, Massimiliano Gobbi, Giampiero Mastinu, Mario Pennati, Giorgio Previati
The lightweight seat of a high performance car is designed taking into account a rear impact. The basic parameters of the seat structure are derived resorting to the simulation of a crash test. A dummy is positioned on the seat and subject to a rear impulse. The simulations provide the dynamic loads acting on the seat structure, in particular the ones applied at the joint between the seat cushion and the seat backrest. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. By means of the simulations the proper parameters of the plastic hinge can be derived to design a safe seat. The simulations are validated by means of indoor tests with satisfactory results. By using the validated model, the influence of seat cushion and backrest parameters on seat passenger's injury are studied. An efficient tool has been developed for the preliminary design of lightweight seats for high performance cars.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
The evolution of airbag sensing system design has been rapid as electromechanical sensors used in earlier front airbag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential airbag deployment in front, side and rollover accidents. In addition to multi-point electronic sensors, advanced airbag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by airbag system algorithms and occupant protection deployment strategies. Historically, traditional reconstruction methods and full scale vehicle crash testing were the primary means available to evaluate the field performance of passenger vehicle airbag systems. Electronic sensing systems have allowed for the advent of electronic data recorders (EDRs), which over the past decade, have provided increasingly more information related to airbag deployment events.
2015-04-14
Technical Paper
2015-01-1428
Shane Richardson, Andreas Moser, Tia Lange Orton, Roger Zou
Currently techniques that can be used to evaluate and analyse lateral impact speeds of vehicle crashes with poles are based on measuring the deformation crush and using lateral crash stiffness data to estimate the impact speed. However, in some cases the stiffness data is based on broad object side impacts rather than pole impacts. The premise is that broad object side impact tests can be used for narrow object impacts; previous authors have identified the fallacy of this premise. Publicly available pole crash test data is evaluated. A range of simulated pole impact tests at various speeds and impact angles are conducted on validated publicly available Finite Element Vehicle models of a 1991 Ford Taurus, a 1994 Chevrolet C2500 and a 1997 Geo Metro (Suzuki Swift), providing a relationship between impact speed, crush depth and impact angle. This paper builds on previous publications and contains additional pole tests and new Finite Element Analyses.
2015-04-14
Technical Paper
2015-01-1430
Brian Gilbert, Joseph McCarthy, Ron Jadischke
Objectives: The analysis and modeling of vehicle crush in accident reconstruction has traditionally been based upon the use of linear crush-based, stiffness coefficients. Recent research has allowed for the calculation and implementation of non-linear crush coefficients. Through the use of Engineering Dynamics Corporation (EDC) accident reconstruction software Human-Vehicle-Environment (HVE), which contains the collision algorithm called DyMESH (DYnamic MEchanical SHell), these coefficients have increased the accuracy of predicted crash pulse data. Research on non-linear crush coefficients thus far has been limited to frontal impacts into rigid barriers. Side Impact tests are typically more complex than a frontal collision testing. One form of side impact tests involve a Moving Deformable Barrier (MDB) impacting a stationary subject vehicle at a crab angle of 26-27 degrees.
2015-04-14
Technical Paper
2015-01-1330
Yoshiyuki Tosa, Hiroyuki Mae
The passenger airbag hits the windshield when it deploys, causing the impulse force to the windshield. To protect passengers, we must adequately support the airbag between the windshield and the instrument panel. We must not fracture the windshield deploying the airbag. We reviewed methods to simulate the stress on the windshield during deployment. This research predicts the dynamic strain on the windshield from deploying the airbag without vehicle tests. Deployment is fast enough to ignore spatial difference in the patterns of the pressure time histories. In this study, the prediction method consists of a deployment test and an FE simulation. The simple deployment test measures the dynamic pressure distribution between the airbag and the flat panel simulating the windshield.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
When airbags deploy they break a plastic tear part of the instrument panel. Timing and the tear fracture process change the airbag’s deployment behavior. The tear fracture process is dependent on the plastic’s temperature. We developed a tear fracture simulation . Because the tear line is composed of 1mm width and 0.5mm-3.0mm flute thickness, simulating the tear fracture process is difficult, even using two models: airbag deployment, and plastic fracture. Thickness determines the tear fracture. The strain distribution of its parts should be predicted accurately. The tear fracture using solid mesh, which is 0.1mm mesh pitch, is predictable. Although it is a very complicated model and has a high computation cost, it is not applicable to the mass production development. We increase the accuracy of the tear fracture process prediction using the shell mesh, which is applicable to the mass production development.
2015-04-14
Technical Paper
2015-01-1409
Joseph Yoon, Kajetan Kietlinski, Freerk Bosma, Martin Tijssens
These days, we begin to see more vehicles equipped with new active safety systems such as radar/camera system and collision imminent braking (CIB) system, etc. The active safety systems are designed and introduced as a safety system in order to help avoid crashes or mitigate injuries when crashes are unavoidable. However, through some internal study conducted at TASS International, we discovered that there may be a potential risk of increased injuries to the occupant when the activation of the active safety systems is not coordinated with that of the passive safety system. For example, when CIB is activated, it puts the occupant out of position closer to the deploying airbag therefore potentially increase injury risks. This risk is believed to be more severe if the occupant is not belted.
2015-04-14
Technical Paper
2015-01-1451
Anand Sai Gudlur, Theresa Atkinson
ABSTRACT The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years.Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to identify factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Viewing 1 to 30 of 3329

Filter

  • Range:
    to:
  • Year: