Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4456
2016-04-12
Event
Multibody system modeling and simulation, rigid and flexible body modeling, loads predictions for vehicle body, frame/sub-frame, exhaust system, driveline, and powertrain, modeling of vehicle dynamics simulation and durability loads simulation, process considering vehicle dynamics and durability loads, data processing and analysis, loads sensitivity analyses for model parameters, design load minimization, prediction of loads effects, robust design methods, driver modeling, and system modeling.
2016-04-12
Event
Focusing on vehicle ride comfort, such as studies on ride evaluation and suspension tuning, occupant biomechanics and seating dynamics, semi-active and active suspension systems and vehicle elastomeric component modeling and tuning. Specific topics include, but not limited to, vehicle ride motion smoothness and control balancing, structural shake, impact harshness and after shake, brake judder/pulsation, smooth road shake/shimmy/nibble, power hop, launch shudder, freeway hop and any other phenomena affecting ride comfort.
2016-04-12
Event
Focusing on tire and terrain mechanics modeling for load simulations, tire model development, parameters identification, and sensitivity analyses, tire test development, road profile characterization, effective road profile development, and interactions between tire, suspension/steering/brake systems, and different terrains, spindle loads/travel variation characteristics from deterministic and rough roads, terramechanics, tire noise, rolling resistance and correlation studies.
2016-04-12
Event
This session focuses on analysis and enhancement of vehicle dynamics performance including handling/ braking/ traction characteristics as well as robustness and active stability under the influence of loading, tire forces and intelligent tire technology for enhancing overall vehicle system dynamics and safety characteristics and robustness. Load variations and other uncertainties, impact of system hybridization and electrification on vehicle dynamics and controls will be discussed.
2015-10-08
Event
This session will address aerodynamic testing requirements, technologies, facilities, and methods with a view toward improving efficiency and reducing emissions of medium and heavy commercial ground vehicles. Specific topics to be discussed are aerodynamic related corrections, correlations and assessments for various data sources including wind tunnel, CFD, and on-track/road testing.
2015-08-27
Standard
J575_201508
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports.
2015-08-18
WIP Standard
J2265
This SAE Standard specifies: a test method for assessing the lubricating property of diesel fuels including those which may contain a lubricity enhancing additive, and the performance criteria necessary to ensure reliable operation of diesel fuel injection equipment with respect to fuel lubrication of such equipment. It applies to fuel used in diesel engines.
2015-07-22
WIP Standard
J2050
This SAE Standard covers two types of hose fabricated from textile reinforcement and synthetic rubber, assembled with end fittings for use in high-temperature automotive power steering applications as flexible connections within the temperature range of -40 to +150 °C (-40 to +302 °F) maximum and 10.3 MPa (1500 psi) maximum working pressure. These hoses are intended for use in applications where reduction in amplitude of pump pressure pulsation is required. Class A hose has a nominal OD of 19.84 mm (0.781 in). Class B hose is a lightweight hose with a nominal OD of 17.91 mm (0.705 in). This specification defines the minimum performance levels of a flexible connector in the hydraulic steering system to convey power steering fluid from the steering pump to the steering gear.
2015-06-30
Standard
J651_201506
This Recommended Practice had defined a test procedure and process which gave a reasonably complete description of the efficiency and performance of a 20th century automatic transmission. With the introduction of electronic controls, the number of parameters which control the transmission’s operation have expanded extensively and these need to be defined for each test. The interaction between the transmission, the environment, the engine, the cooling and other systems have also made test definition very difficult and complex. Finally, the diversity, the rapid changes, and the component complexity introduced by electric and hybrid drive system combine with the above difficulties to make it impractical to define a Recommended Practice which could provide a meaningful description of performance and efficiency of 21st century automotive transmissions. The existing Recommended Practice J651 is being stabilized to preserve the test procedures for future reference.
2015-06-12
Standard
J294_201506
This SAE Recommended Practice establishes a method of testing the structural integrity of the brake system of all new trucks, buses, and combination vehicles designed for roadway use and falling in the following classifications: a. Trucks and Bus— Over 4500 kg (10 000 lb) GVWR b. Combination of vehicle—Towing vehicle over 4500 kg 10 000 lb) GVWR The test consists of two parts: a Structural EnduranceTest followed by a Structural Ultimate Strength Test.
2015-05-27
WIP Standard
J2087
This SAE Standard provides test procedures, requirements, and guidelines for a daytime running light (DRL) function.
2015-05-04
WIP Standard
J2040
This SAE Standard provides test procedures, requirements, and guidelines for tail lamps intended for use on vehicles 2032 mm or more in overall width. Tail lamps conforming to the requirements of this document may also be used on vehicles less than 2032 mm in overall width.
2015-05-04
WIP Standard
J2261
This SAE Standard provides test procedures, requirements, and guidelines for stop lamps and turn signal lamps intended for use on vehicles 2032 mm or more in overall width. Stop lamps and front- and rear-turn signal lamps conforming to the requirements of this document may be used on vehicles less than 2032 mm in overall width.
2015-04-29
WIP Standard
J594
This SAE Standard provides test procedures, requirements, and guidelines for reflex reflectors.
2015-04-14
Technical Paper
2015-01-0429
Na Xu, Chaochen Ma, Jianbing Gao, Zhiqiang Zhang, Xunzhi Qu
Abstract The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
2015-04-14
Technical Paper
2015-01-0427
Zhigang Wei, Limin Luo, Shengbin Lin
Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
2015-04-14
Technical Paper
2015-01-1324
Guangtian Gavin Song, Chin-An Tan
Abstract Nowadays, as an irreplaceable means alongside CAD and testing, CAE is more and more widely applied with advanced material modeling and simulation methods continuously being explored, so as to get more accurate result as testing. In vehicle product development process, door slam durability evaluation is an important measurement for body closure structure. So far numerous effort has been taken to develop more mature methods to well define door slam simulation in stress and fatigue life analysis. Overall all methods ever being applied can be summarized as two categories, linear stress based method and nonlinear stress based method. The methodologies, such as inertia relief method, direct transient response solution, or local strain approach, can be included in linear stress based method with linear material properties as symbol in CAE model. In local strain approach, contact surface could be defined in the necessary area with consideration for more realistic load transfer.
2015-04-14
Technical Paper
2015-01-1431
Mark H. Warner, Jon E. Bready, Wyatt Y. Warner, Alan F. Asay
Abstract Snowmobile acceleration, braking and cornering performance data are not well developed for use in accident reconstruction. Linear acceleration and braking data published by D'Addario[1] gives results for testing on 4 snowmobiles of various make and model. This paper presents the results of on-snow tests performed in 2014 which include acceleration and cornering maneuvers that have not been published previously. Maximum and average cornering speeds and corresponding lateral accelerations are presented for turns of radius 20, 35 and 65 feet (6.1, 10.7 and 19.8 meters) on level, packed snow. Performance values for acceleration, braking, and cornering are determined in tests with and without a passenger. Results of linear acceleration and braking tests were found to be comparable to the previously published work. The data are useful in snowmobile accident reconstruction for certain types of snowmobile motion analyses.
2015-04-14
Technical Paper
2015-01-0591
Karan R. Khanse, Eric Pierce, Michael Ng, Saied Taheri
Abstract Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
Viewing 1 to 30 of 4456

Filter

  • Range:
    to:
  • Year: