Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4491
2017-04-04
Event
The focus of this session are the tests and test methods employed in the evaluation of the performance and durability of powertrain (engines, transmissions), driveline (4WD systems, driveshafts, axles), chassis (frame, suspensions, brakes, etc.) and body components, subsystems, and full vehicle systems.
2017-04-04
Event
Focusing on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as mounts or bushings, shock absorbers, and joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
2016-09-27
Journal Article
2016-01-8061
Thomas Howell, Bruce Swanbon, Justin Baltrucki, Alan Steines, Nancy Neff, Biao Lu
Abstract Heavy duty valvetrains have evolved over the last 20 years with the integration of engine braking into the valvetrain. Jacobs Vehicle Systems have developed the High Power Density (HPD) engine brake that increases retarding powe, especially at low engine speed. The system works by converting the engine from a 4 stroke during positive power into a 2 stroke for retarding power. This more than doubles the retarding power at cruise engine speeds reducing the need to downshift in order to control the vehicle, compensates for reduction in natural vehicle retarding due to aerodynamic and friction enhancements, and enables the same vehicle retarding power with a smaller displacement engine as engine downsizing becomes prevalent.
2016-09-18
Technical Paper
2016-01-1920
Deaglan O'Meachair, Stamatis Angelinas, Matthew Crumpton, Antonio Rubio Flores, Juan Garcia, Pablo Barles
Abstract Bentley Motors Ltd. has developed a Carbon Silicon Carbide (CSiC) brake system for its Mulsanne product, introduced at 17MY. The CSiC brake system is conceived as a performance brake system, and as such offers notable improvements in brake performance. In developing the brake system, particular focus was placed on meeting the refinement levels required for a premium product, and indeed as the flagship model for Bentley Motors, NVH refinement of the brake system was of particular concern. This paper intends to discuss the technical performance of the brake system and review the NVH performance of the brakes. Particular attention is given to the methodology employed by Bentley Motors Ltd. and IDIADA Automotive Technology S.A. in identifying NVH concerns, and proposing and validating solutions in the field, through extensive NVH endurance runs. The performance of the system is benchmarked against similar systems offered by Bentley Motors.
2016-09-14
WIP Standard
J575
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports.
2016-08-17
WIP Standard
J1401

This SAE Standard specifies the performance tests and requirements for hydraulic brake hose assemblies used in the hydraulic braking system of a road vehicle. It also specifies the methods used for identification of the hose manufacturer.

This document applies to brake hose assemblies made of a hose fabricated from yarn and natural or synthetic elastomers and assembled with metal end fittings for use with nonpetroleum-base brake fluids as specified in SAE J1703, SAE J1704 and SAE J1705.

The nominal internal diameter of the brake hose shall fall within one of the following values:

    a. less than 4 mm (1/8 in or less)
    b. 4 to 5 mm (3/16 in)

2016-08-16
WIP Standard
J183
This SAE Standard outlines the engine oil performance categories and classifications developed through the efforts of the Alliance of Automobile Manufacturers (Alliance), American Petroleum Institute (API), the American Society for Testing and Materials (ASTM), the Engine Manufacturers Association (EMA), International Lubricant Specification Advisory Committee (ILSAC) and SAE. The verbal descriptions by API and ASTM, along with prescribed test methods and limits are shown for active categories in Table 1 and obsolete categories in Table A1. Appendix A is a historical documentation of the obsolete categories. For purposes of this document, active categories are defined as those (a) for which the required test equipment and test support materials, including reference engine oils and reference fuels, are readily available, (b) for which ASTM or the test developer monitors precision for all tests, and (c) which are currently available for licensing by API EOLCS.
CURRENT
2016-07-19
Standard
ARP5448/3A
This test method outlines a recommended procedure for performing unidirectional load dynamic testing of self-lubricating bearings at room temperature, elevated temperature or sub-zero temperature, dry or contaminated with fluids. The wear data from these tests is to be used for qualification and to establish bearing design criteria.
CURRENT
2016-06-16
Standard
EQB1
Scope is unavailable.
CURRENT
2016-06-06
Standard
AS36100B
This SAE Aerospace Standard (AS) defines the minimum performance requirements and test parameters for air cargo unit load devices requiring approval of airworthiness for installation in an approved aircraft cargo compartment and restraint system that complies with the cargo restraint requirements of Title 14 CFR Part 25, except for the 9.0g forward ultimate inertia force of § 25.561 (b)(3)(ii).
CURRENT
2016-06-06
Standard
AS681K
This SAE Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady state and transient performance calculated using computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight, and dimensions computed by computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. This standard is applicable to, but not limited to the following program types: data reduction, steady-state, transient, preliminary design, study, specification, status, and parametric programs.
CURRENT
2016-05-20
Standard
J343_201605
This SAE Standard gives methods for testing and evaluating performance of the SAE 100R series of hydraulic hose and hose assemblies (hose and attached end fittings) used in hydraulic fluid power systems. Specific tests and performance criteria for evaluating hose assemblies used in hydraulic service are in accordance with the requirements for hose in the respective specifications of SAE J517. This document further establishes a uniform means of testing and evaluating performance of hydraulic hose assemblies.
2016-05-18
WIP Standard
J1204
This SAE Recommended Practice provides uniform procedures and minimum performance requirements for fatigue testing ferrous and aluminum wheels intended for normal highway use on travel, camping, and boat and light utility trailers drawn by passenger cars, light trucks, and multipurpose vehicles. (See Figures 1 and 2.) For procedures and minimum performance requirements for wheels used on trucks, see SAE J267, and for wheels used on passenger cars, see SAE J328. For the application of passenger car and light ruck wheels [inset less than 0.10 m (0.33 ft)] to this trailer service, use this procedure. For the application of heavier truck wheels [inset 0.10 m (0.33 ft) or mre] use SAE J267. Mobile home service is outside the scope of this document. There are two basic test procedures described, a cornering fatigue test and radial fatigue test. The cornering test is directed at the wheel disc; whereas the radial test also examines the rim and attachment portion of the wheel.
CURRENT
2016-05-17
Standard
AS5681B
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of Remote On-Ground Ice Detection Systems (ROGIDS). These systems are ground-based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Section 3 through Section 5. Section 2 provides reference information, including related documents, abbreviations, and definitions. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations.
HISTORICAL
2016-05-13
Standard
AIR1794A
This metric SAE Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems.
CURRENT
2016-04-27
Standard
J2530_201604
This SAE Recommended Practice provides performance, sampling, and certifying requirements, test procedures, and marking requirements for aftermarket wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicles. For aftermarket wheels on trailers drawn by passenger cars, light trucks or multipurpose vehicles, see SAE J1204. These performance requirements apply only to wheels made of materials included in Table 1 and Table 2. New nomenclature and terms are added to clarify wheel constructions typically not used in OEM applications. The testing procedures and requirements are based on SAE standards listed in the references.
2016-04-22
WIP Standard
J1967
This SAE Recommended Practice applies to retroreflective materials that are used on truck tractors and trailers 2032 mm or more in overall width and with a Gross Vehicle Weight Rating (GVWR) over 4536 kg, and school buses. The retroreflective materials for the truck tractors and trailers are super-high-intensity materials containing microprisms. The retroreflective materials for school buses may contain flexible non-exposed glass bead lens or microprisms.
2016-04-21
WIP Standard
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
CURRENT
2016-04-20
Standard
ARP6852A
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: - Similarity Analyses - Icing Wind Tunnel Tests - Flight Tests - Computational Fluid Dynamics and other Numerical Analyses This document also describes: - The history of evaluation of the aerodynamic effects of fluids - The effects of fluids on aircraft aerodynamics - The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 - Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
2016-04-14
Event
Multibody system modeling and simulation, rigid and flexible body modeling, loads predictions for vehicle body, frame/sub-frame, exhaust system, driveline, and powertrain, modeling of vehicle dynamics simulation and durability loads simulation, process considering vehicle dynamics and durability loads, data processing and analysis, loads sensitivity analyses for model parameters, design load minimization, prediction of loads effects, robust design methods, driver modeling, and system modeling.
2016-04-14
Event
Focusing on tire and terrain mechanics modeling for load simulations, tire model development, parameters identification, and sensitivity analyses, tire test development, road profile characterization, effective road profile development, and interactions between tire, suspension/steering/brake systems, and different terrains, spindle loads/travel variation characteristics from deterministic and rough roads, terramechanics, tire noise, rolling resistance and correlation studies.
2016-04-14
Event
This session focusing on vehicle ride comfort, addressing issues such as ride evaluation, suspension tuning, occupant biomechanics, seating dynamics, semi-active and active suspension and vehicle elastomeric components. Topics may include vehicle ride motion smoothness and control balancing, structural shake, impact harshness and after shake, brake judder/pulsation, smooth road shake/shimmy/nibble, power hop, launch shudder, freeway hop and any other phenomena affecting ride comfort.
2016-04-12
Event
This session focuses on analysis and enhancement of vehicle dynamics performance including handling/ braking/ traction characteristics as well as robustness and active stability under the influence of loading, tire forces and intelligent tire technology for enhancing overall vehicle system dynamics and safety characteristics and robustness. Load variations and other uncertainties, impact of system hybridization and electrification on vehicle dynamics and controls will be discussed.
CURRENT
2016-04-10
Standard
AIR4023C
This document discusses the history and development of endurance requirements, provides an analysis of test contaminant material and includes a discussion of future requirements.
2016-04-05
Technical Paper
2016-01-1062
Ramachandran Ragupathy, K. Pothiraj, C. Chendil, T. Kumar Prasad, Prasanna Vasudevan
Abstract Hybrid powertrains generally involve adding an electric propulsion system to an existing internal combustion engine powertrain. Due to their reduced emissions, no reliance on public infrastructure and acceptable cost of ownership, hybrids are seen as a feasible intermediate step to deliver clean and affordable transportation for the masses. Such systems are immensely complex due to the number of interplaying systems and advanced control strategies used to deliver optimum performance under widely varying loads. Resonant torsional impacts arise out of the interactions due to rotational speed variations providing impulses at specific frequencies to the spinning inertias connected by members of finite stiffness. The effects, depending on the magnitude and duration of the impacts range from unacceptably harsh vibrations to catastrophic component failure.
2016-04-05
Technical Paper
2016-01-1313
Brian Pinkelman, Woo-Keun Song
Abstract Most methods of vibration analysis focus on measuring the level of vibration. Some methods like ISO-2631 weigh vibration level based on human sensitivity of location, direction, and frequency. Sound can be similarly measured by sound pressure level in dB. It may also be weighted to human frequency sensitivity such as dBA but sound and noise analysis has progressed to measure sound quality. The characteristic and the nature of the sound is studied; for example equal or near equal sound levels can provide different experiences to the listener. Such is the question for vibration; can vibration quality be assessed just as sound quality is assessed? Early on in our studies, vibration sensory experts found a difference in 4 seats yet no objective measurement of vibration level could reliably confirm the sensory experience. Still these particular experiences correlated to certain verbal descriptors including smoothness/roughness.
2016-04-05
Technical Paper
2016-01-0796
Ashish Shah, Per Tunestal, Bengt Johansson
Abstract This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Viewing 1 to 30 of 4491

Filter

  • Range:
    to:
  • Year: