Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3206
2016-06-15
Technical Paper
2016-01-1848
Jean-Loup Christen, Mohamed Ichchou, Olivier Bareille, Bernard Troclet
Abstract The problem of noise transmission through a structure into a cavity appears in many practical applications, especially in the automotive, aeronautic and space industries. In the mean time, there is a trend towards an increasing use of composite materials to reduce the weight of the structures. Since these materials usually offer poor sound insulation properties, it is necessary to add noise control treatments. They usually involve poroelastic materials, such as foams or mineral wools, whose behaviour depends on many parameters. Some of these parameters may vary in rather broad ranges, either because of measurement uncertainties or because their values have not been fixed yet in the design process. In order to efficiently design sound protections, performing a sensitivity analysis can be interesting to identify which parameters have the most influence on the relevant vibroacoustic indicators and concentrate the design effort on them.
2016-06-15
Technical Paper
2016-01-1835
Albert Albers, Fabian Schille, Matthias Behrendt
Abstract In terms of customer requirements, driving comfort is an important evaluation criterion. Regarding hybrid electric vehicles (HEVs), maneuver-based measurements are necessary to analyze this comfort characteristic [1]. Such measurements can be performed on acoustic roller test benches, yielding time efficient and reproducible results. Due to full hybrid vehicles’ various operation modes, new noise and vibration phenomena can occur. The Noise Vibration Harshness (NVH) performance of such vehicles can be influenced by transient powertrain vibrations e.g. by the starting and stopping of the internal combustion engine in different driving conditions. The paper at hand shows a methodical procedure to measure and analyze the NVH of HEVs in different driving conditions.
2016-05-24
Standard
ARP5374B
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment.
2016-05-12
Standard
J2923_201605
This Recommended Practice applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes.
2016-05-10
Standard
J1668_201605
The correct setting and adjustment of fuel injection pumps requires standardized testing conditions. This SAE Standard summarizes the design and operating parameters for test benches so that, using certain information supplied by the pump manufacturer, the pump test schedule, and certain information supplied by the test bench manufacturer, it can be determined whether a particular test bench is suitable for driving a particular injection pump. This document is in most cases a summary of the ISO Standard 4008, Parts 1, 2, and 3 and is intended to provide its critical aspects. Standard ISO 4008 should be referred to for more details. Field of Application: This document is primarily applicable to test benches suitable for the calibration of fuel injection pumps for diesel engines requiring a fuel delivery of up to 300 mm3/st/cylinder at full load.
2016-05-06
Standard
ARP5825A
This SAE Aerospace Recommended Practice (ARP) contains the general requirements and test procedures for Dual Mode (NVIS Friendly visible and Covert) exterior lighting for most rotorcraft and fixed wing aircraft and could be applicable to ground vehicles that desire a Dual Mode lighting system.
2016-04-27
Standard
J3060_201604
This SAE Standard serves as a guide for vibration testing procedures of Automotive and Heavy Duty storage batteries.
2016-04-27
Standard
J2562_201604
This SAE Recommended Practice provides uniform laboratory procedures for biaxial fatigue testing of wheels intended for normal highway use and temporary use on passenger car vehicles and light trucks and minimum cycle requirement for ferrous wheels for ballasted passenger car applications. The appendices provide scalable load files that are applicable to ballasted passenger cars and ballasted light trucks. A load file for unballasted passenger cars will be added to this document.
2016-04-13
WIP Standard
J1961
This test method specifies the operating procedures for using a solar fresnel reflector apparatus for the accelerated exposure of various automotive materials. Sample preparation, test durations, and performance evaluation procedures are covered in material specifications of the different automotive manufacturers.
2016-04-12
Standard
J2084_201604
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
2016-04-06
Standard
J1228_201604
This SAE Standard specifies the test requirements in addition to those given in ISO 3046-1 for determining the power, at a single point or as a power curve, of marine propulsion engines or systems for recreational craft and other small craft using similar propulsion equipment of less than 24 m length of the hull. It also provides the means for documenting and checking the declared (rated) power published by the manufacturer.
2016-04-06
Standard
J2020_201604
1.1 This test method specifies the operating conditions for a fluorescent ultraviolet (UV) and condensation apparatus used for the accelerated exposure of various automotive exterior components. 1.2 Specimen preparation, test duration, and performance evaluation procedures are addressed by each automotive manufacturer’s material specifications. 1.3 This SAE Standard may involve hazardous materials, operations, and equipment. This document does not purport to address all of the safety problems associated with its use.
2016-04-05
Standard
J1950_201604
The facilities used by domestic automotive manufacturers to provide accelerated corrosion aging of complete vehicles are described in general. The types of vehicles tested, general test methodology, and techniques used to determine test-to-field correlation are discussed. The different procedures used throughout the industry produce different results on various vehicle coatings, components, and systems. The key to successful interpretation of test results is a thorough understanding of the corrosion mechanisms involved and the effects of test limitations on these mechanisms. The purpose of this information report is to provide a general overview of some proving ground procedures and facilities used in the United States to evaluate the corrosion protection performance of vehicles.
2016-04-05
Standard
J1293_201604
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
2016-04-05
Standard
J1528_201604
Test Material: Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
2016-04-05
Journal Article
2016-01-1191
Saher Al Shakhshir, Torsten Berning
Abstract Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste heat. One critical technical problem of these fuel cells is still the water management: the proton exchange membrane in the center of these fuel cells has to be hydrated in order to stay proton-conductive while on the other hand excessive liquid water can lead to cell flooding and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel.
2016-04-05
Technical Paper
2016-01-1518
Carolyn W. Roberts, Jacek Toczyski, Jack Cochran, Qi Zhang, Patrick Foltz, Bronislaw Gepner, Jason Kerrigan, Mark Clauser
Abstract Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
2016-04-05
Technical Paper
2016-01-1517
Cole R. Young, David J. King, James V. Bertoch
Abstract The purpose of this study was to characterize the kinematics of four Chevrolet Tracker rollover tests and to determine their average and intermediate deceleration rates while traveling on concrete and dirt. Single vehicle rollover tests were performed using four 2001 Chevrolet Trackers fitted with six degree of freedom kinematic sensors. Tests were conducted using a rollover test device (RTD) in accordance with SAE J2114. The test dolly was modified (resting height of the vehicle wheels was raised) between tests 1, 2, and 3. The RTD was accelerated to 15.6 m/s (35 mph) and then decelerated rapidly by an energy absorbing crash cushion (EA) to cause the vehicle to launch and roll. The vehicles initially rolled on a smooth concrete surface and continued into loose dirt. This paper adds to the body of work identifying phases of constant deceleration during staged RTD tests and compares these phases to the overall deceleration rate.
2016-04-05
Technical Paper
2016-01-1549
Nicola Bartolini, Lorenzo Scappaticci, Francesco Castellani, Alberto Garinei
Knocking noise is a transient structural noise triggered by piston rod vibrations in the shock absorber that excite the vibration of chassis components. Piston rod vibrations can be caused by valve motion (opening and closing) and dry friction during stroke inversions. This study investigates shock absorber knocking noise in twin tube gas-filled automotive shock absorbers and its aim is to define an acceptance criterion for a sample check of the component. If, in fact, the damper comes from a large mass production, it may happen that small mounting differences lead to different behaviors that result in higher or lower levels of knocking noise. To achieve this goal, experimental tests were carried out using a hydraulic test bench; accelerometers were placed in proximity to the rebound valve and on the piston rod. The vibration phenomenon was then isolated through a post-processing analysis and a damped and unforced lumped mass model was used to characterize the vibration.
2016-04-05
Technical Paper
2016-01-0920
Bradford A. Bruno, Ann M. Anderson, Mary Carroll, Thomas Swanton, Paul Brockmann, Timothy Palace, Isaac A. Ramphal
Abstract Aerogels are nanoporous structures with physical characteristics that make them promising for use in automotive exhaust catalysis systems: highly porous with low densities (<0.1 g/mL) and high surface area per unit mass (>300 m2/g) - features that provide favorable characteristics for catalysis of gaseous pollutants. Ceramic aerogels are also highly thermally insulating (∼0.015 W/mK) and able to withstand high temperatures. Aerogels can be made of a wide variety of ceramics (e.g. alumina, silica, titania) with other catalytically active metals (e.g. copper, cobalt, nickel) incorporated into their structures. This paper provides a brief overview of the rapid supercritical extraction (RSCE) method employed in this work for aerogel preparation, describes in detail the benchtop scale testbed and methods used to assess the catalytic activity of RSCE fabricated aerogels, and presents data on the catalytic ability of some promising aerogel chemistries.
2016-04-05
Technical Paper
2016-01-1019
Arunandan Sharma, Fabien Redon
Abstract After having tested basic transient maneuvers such as load-step changes on the 4.9L three-cylinder opposed-piston diesel engine [1], a similar test-engine was subjected to a more aggressive test-routine - a hot-start heavy-duty FTP (Federal Test Procedure) transient cycle for the on-road engines. The three main objectives of this exercise were: 1 To assess the ability of the engine to meet the transient cycle requirements while maintaining close to the cycle-average BSFC for the FTP cycle derived from steady-state torque-to-fuel map.2 To attain engine-out brake-specific emission levels that are compatible with US2010 EPA requirements with a conventional after-treatment system consisting of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF) and a selective catalyst reduction (SCR) system.3 To compare hot-start FTP transient cycle fuel economy with a publicly available benchmark.
2016-04-05
Technical Paper
2016-01-1026
Silvia Marelli, Simone Gandolfi, Massimo Capobianco
Abstract Today turbocharging represents a key technology to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines, moreover improving performance. 1D models, generally employed to compute the engine-turbocharger matching conditions, can be optimized basing on certain information about turbine and compressor behavior. Because of difficulty in the correct evaluation of turbine isentropic efficiency with direct techniques, turbocharger turbine efficiency is generally referred to thermomechanical efficiency. To this aim, the possibility to accurately estimate power losses in turbocharger bearings can allow the assessment of the turbine isentropic efficiency starting from the thermomechanical one. In the paper, an experimental and theoretical study on turbocharger mechanical losses is presented. The proposed model, developed in the MATLAB environment, refers to radial and axial bearings.
2016-04-05
Technical Paper
2016-01-1028
Qinqing Chen, Jimin Ni, Xiuyong Shi, Qiwei Wang, Qi Chen, Si Liu
Abstract Boosting and downsizing is the trend of future gasoline engine technology. For the turbocharged engines, the actuation of intake boosting pressure is very important to the performance output. In this paper, a GT-Power simulation model is built based on a 1.5 L turbocharged gasoline engine as the research object. The accuracy of model has been verified through the bench test data. Then it is conducted with numerical simulation to analyze the effect of wastegate diameter on the engine performance, including power output and fuel economy. Mainly the wastegate diameter is optimized under full engine operating conditions. Finally an optimal MAP of wastegate diameter is drawn out through interpolation method. By the transmission relationship between wastegate and actuator, a wastegate control MAP for electric actuated wastegate can be obtained.
2016-04-05
Technical Paper
2016-01-1355
Jeffrey R. Hodgkins, Walter Brophy, Thomas Gaydosh, Norimasa Kobayashi, Hiroo Yamaoka
Abstract Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
2016-04-05
Technical Paper
2016-01-1600
Pruthviraj Mohanrao Palaskar, Vivek Kumar, Rohit Vaidya
Abstract Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
2016-04-05
Technical Paper
2016-01-1582
Dirk Wieser, Sabine Bonitz, Lennart Lofdahl, Alexander Broniewicz, Christian Nayeri, Christian Paschereit, Lars Larsson
Abstract Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
2016-04-05
Technical Paper
2016-01-0123
Mostafa Anwar Taie, Mohamed ElHelw
Abstract The evaluation of Advanced Driver Assistance Systems (ADAS including driver assistance and active safety) has increasing interest from authorities, industry and academia. AsPeCSS active safety project concludes that good results in a laboratory test for active safety system design does not necessarily equate to an effective system in real traffic conditions. Moreover, many ADAS assessment projects and standards require physical testing on test tracks (dummy vehicles, pedestrian mannequins…), which are expensive and limit testing capabilities. This research presents a conceptual framework for on-board evaluation (OBE) of ADAS, which can be used as a cost effective evaluation in real-life traffic conditions. OBE shall monitor, record, analyze and report both internal behavior and external environment (external objects list and video stream) of ADAS under evaluation (ADASUE).
2016-04-05
Technical Paper
2016-01-0323
Sashank Mani Vedula, Nabal Kishore Pandey, KumarPrasad Tellikepalli, Satish Thimmalapura
Abstract OEMs these days are focusing on front loading the activities to Virtual Test Environment (VTE) based development owing to high development cost and complexity in achieving repeatability during testing phase of vehicle development,. This process not only helps in reducing the cost and time but also helps in increasing the maturity and confidence level of the developed system before actual prototype is built. In the past, extensive research has happened for increasing the fidelity of VTE by improving plant model efficacy which involves powertrain and other vehicle systems. On the other hand, improving the precision of driver model which is one of the most complex nonlinear systems of virtual environment still remains a challenge. It is apparent that various drivers show different behavior in real world for a given drive profile. While modelling a driver for a VTE, the real world driver attributes are seldom considered.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
Viewing 1 to 30 of 3206

Filter

  • Range:
    to:
  • Year: