Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3235
2016-09-27
Technical Paper
2016-01-8010
M. Kamel Salaani, David Mikesell, Chris Boday, Devin Elsasser
Rear-end collisions account for roughly 20% of all police-reported heavy truck crashes in 2004, and the heavy truck was the striking vehicle in 60% of these cases. In light of this, Automatic Emergency Braking (AEB), an electronically-assisted means of avoiding or mitigating frontal collision, could have significant safety benefits. Field testing of such systems using real vehicles is necessarily limited by the danger and expense inherent in crash-imminent scenarios, especially when the system is not designed to eliminate all collisions but rather reduce their severity. Hardware-in-the-Loop (HiL) systems have the potential to enable safe and accurate laboratory testing and evaluation of AEB systems. This paper describes the setup and experimental validation of such a HiL system.
2016-09-27
Technical Paper
2016-01-8044
Guoyu FENG, Wenku Shi, Henghai Zhang, Qinghua Zu
In order to predict the fatigue life of heavy commercial vehicles thrust rod made of rubber material dumbbell specimens and uniaxial tensile fatigue tests. Based on the measured data samples to the maximum principal strain injury parameters established rubber uniaxial fatigue life prediction models. In the longitudinal tension and compression loading, fatigue life V rods were predicted, and by the uniaxial fatigue test verification, the results show that the maximum principal strain prediction model, the maximum error is less than 10% predicted better results. Show by dumbbell specimen data, the establishment of a spherical hinge rubber life prediction model method, it is possible to predict the fatigue life of the thrust rod.
2016-09-27
Technical Paper
2016-01-8013
Marius Feilhauer, Juergen Haering PhD, Sean Wyatt
The way to autonomous driving is closely connected to the possibility of verifying and validating Advanced Driver Assistance Systems (ADAS), as it is one of the main challenges to achieve secure, reliable and therewith socially accepted self-driving cars. Hardware-in-the-Loop (HiL) based testing methods offer the great advantage of validating components and systems in an early stage of the development cycle and it is an established process in automotive industry. When validating ADAS using HiL test benches, there are different barriers and conceptual difficulties engineers have to face: How to pipe simulated signals into multiple sensors including Radar, Ultrasonic, Video or Lidar? How to combine classical physical simulations, e.g. vehicle dynamics, with sophisticated three-dimensional, GPU-based environmental simulations? In this article, we present current approaches of how to master these challenges and provide guidance by showing the advantages and drawbacks of each approach.
2016-09-27
Technical Paper
2016-01-8152
Brian R. McAuliffe, David Chuang
In an effort to support Phase 2 of Greenhouse Gas Regulations for Heavy-Duty Vehicles in the United States, a track-based test program was jointly supported by Transport Canada, Environment and Climate Change Canada, the US Environmental Protection Agency, and the National Research Council Canada to verify aerodynamic evaluation methodologies proposed by the US EPA. Coast-down and Constant-Speed tests were conducted with a modern aerodynamic tractor matched to a conventional 53 ft dry-van trailer, and outfitted with two drag reduction technologies. Enhanced wind-measurement instrumentation was introduced, consisting of a vehicle-mounted fast-response pressure probe and four track-side sonic anemometers that, when used in combination, provided reliable measurements of the wind conditions experienced by the vehicle during the tests.
2016-09-20
Technical Paper
2016-01-2000
Mark Bodie, Thierry Pamphile, Jon Zumberge, Thomas Baudendistel, Michael Boyd
Cost and performance requirements are driving military and commercial systems to highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. Validation for an air cycle machine model based on acceptance sampling and tolerance interval is presented here. The validation process described in this presentation is based on MIL-STD 3022 with emphasis on requirements settings and the testing process.
2016-09-20
Technical Paper
2016-01-2030
Jon Zumberge, Michael Boyd, Raul Ordonez
Cost and performance requirements are driving military and commercial systems to highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. A process of model and control algorithm validation for a dc-dc boost converter circuit based on acceptance sampling is presented here. The validation process described in this paper is based on MIL-STD 3022 with emphasis on requirements settings and the testing process. The key contribution of this paper is the process for model and control algorithm validation specifically a method for decomposing the problem into model and control algorithm validation stages.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
The next-generation of more electric aircraft (MEA) will rely heavily on multiple generators and energy storage to service a mix of constant power and resistive loads. This increase in system complexity, coupled with strict physical and performance requirements, necessitates the need for model-based system engineering (MBSE). As such, the validation of the component models is critical for the development process of MBSE. While it is not uncommon to develop/test component models with uncertainty studies combined with educated assumptions for the model parameters, the experimental hardware tests provide an important and effective means to validate the component models and quantify the variability of the model parameters. The Air Force Research Laboratory (AFRL) Intelligent Power program has procured numerous 40 kVA, 400 Hz, brushless synchronous generators at various stages of their life cycle.
2016-09-20
Technical Paper
2016-01-1994
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
For aircraft electromechanical actuator (EMA) cooling application, the main objectives in axial fan design are high pressure head and high efficiency over a wide operating range including speed variation 1x~3x and pressure 0.2~1atm variation. The fan is based on a thickness of 2.54 cm, 48 mm hub, 86 mm fan diameter. The purpose of this study is to characterize a fan's performance at various rotational speeds and various ambient pressures, from 0.2 atm to 1 atm. Methodology An 86-mm diameter axial fan for electromechanical actuators was designed. The blade shape was obtained by optimization design of the radial blade using CFD technique. Geometrical parameters describing the variations of the blade profile were determined by hub contour and fan’s required parameters given above. The 3,5, 7-blade configurations were compared with the optimal blade profile. A commercial brushless DC axial fan motor is chosen. The fan blades were 3-D printed and tested in a closed test loop.
2016-09-20
Technical Paper
2016-01-2064
Shashank Krishnamurthy, Stephen Savulak, Yang Wang
The emergence of wide band gap devices has pushed the boundaries of power converter operations and high power density applications. It is desirable to operate a power inverter at high switching frequencies to reduce passive filter weight and at high temperature to reduce the cooling system requirement. The paper describes the design and test of a power electronic converter that converts a fixed input DC voltage to a variable voltage variable frequency three phase output. The component selection and design were constrained such that the converter can operate at and ambient temperature of 170C. The design of the key functional components such as the gate drive, power module, controller and communication will be discussed in the paper. Test results for the converter at high temperature will also be presented.
2016-09-20
Technical Paper
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace and automotive industries. The demand for such a communication infrastructure is driven by the users’ need to run tests on hybrid test systems. These consist of individual, coupled test systems, each dedicated to different, even diverse needs. In the aerospace industry, there is a growing demand for modularity. Future laboratory tests means (LTM) must be scalable and exchangeable for maximum flexibility. Due to their very nature, hybrid test systems are used as integration test systems for large portions of the electronics of an aircraft (e.g., avionics, cabin) or even the complete aircraft electronics. Thus, these integration test systems need to handle high numbers of I/O channels and bus data. In order to make such test systems manageable and to enable a flexible use (e.g., to use only parts of such a system for dedicated tasks), using modular test systems makes sense.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modelling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multiphysics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-18
Technical Paper
2016-01-1932
Niclas Strömberg
During several years a toolbox for performing virtual rig tests of a brake disc has been developed by the author. A thermo-flexible multi-body model of a test rig is derived and implemented. A thermo-mechanical model of the pad-disc system is formulated including thermo-elasticity, frictional contact and wear. The energy balance at the contact interface is governed by contact conductance that depends linearly on the contact pressure and the frictional heat depends on a temperature dependent coefficient of friction. Instead of adopting a standard Lagrangian approach, the disc is formulated in an Eulerian frame like a fluid. This is then coupled to the pad most accurately by using Signorini’s contact conditions, Coulomb’s law of friction and Archard’s law of wear. The numerical treatment of these laws are performed by applying an augmented Lagrangian formulation, which in turn is solved with a non-smooth Newton method.
2016-09-18
Technical Paper
2016-01-1913
Alessandro Sanguineti, Andrea Bonfanti, Federico Tosi, Flavio Rampinelli
Organic brake pads for automotive can be defined as brake linings where the bonding matrix is constituted of high-temperature thermosetting resins. Bonded together inside the polymeric binder are a mix of components (e.g. abrasives, lubricants, reinforcements, fillers, modifiers…), each playing a distinctive role in determining the tribology and friction activity of the final friction material. The herein reported work presents novel inorganic “alkali-activated”-based materials suitable for the production of alternative brake linings (i.e. brake pads), by means of an unconventional low-temperature wet process. Exploiting the hydraulic activity of specific components when exposed to an alkaline environment, such peculiar inorganic materials are capable of coming to a complete hardening without the need of traditional high-temperature energivorous procedures.
2016-09-18
Technical Paper
2016-01-1915
Meechai Sriwiboon, Seong Rhee, Kritsana kaewlob, Nipon Tiempan, Rungrod Samankitesakul
Two formulations have been selected and tested for this investigation; Low-Copper NAO and Copper – Free NAO. Each formulation was processed to achieve 3 levels of porosity; 12, 17 and 22%. Each sample was tested for hardness (HRR, HRS, and HRL), natural frequencies and compressibility plus performance testing for friction, wear and brake squeal. This paper describes correlations or lack of them between all the measurements.
2016-09-18
Technical Paper
2016-01-1918
Yusuke Aoki, Yasuyuki kanehira, Yukio Nishizawa
Brake squeal is an uncomfortable noise that occurs while braking. So, it is an important issue for automobile quality to prevent brake products from squealing. Brake shims are widely used to reduce squeal occurrence rate. To quantify the anti-squeal effect of shims, loss factor has been measured with a bending mode tester, instead of repeating many dynamometer tests. However, there are cases where measurement results have less correlation to actual squeal suppression rate. Therefore, we have to evaluate the anti-squeal effect by dynamometer or on an actual car until the best shim can be selected. In this work, we focused on the differences between measurement conditions and actual braking conditions of shims to obtain a good correlation. The bending mode tester measures loss factor under pressure-free condition even though shims are compressed by pistons or cylinders towards the backplate of the pad.
2016-07-20
Standard
J1409_201607
This SAE Recommended Practice establishes uniform test procedures for air brake systems pneumatic valves with respect to: a. Input-Output Performance b. Leakage Characteristics c. Low Temperature Evaluation d. Elevated Temperature Evaluation e. Corrosion Resistance Evaluation f. Endurance Testing g. Structural Integrity h. Vibration Testing
2016-07-19
Standard
ARP5448/3A
This test method outlines a recommended procedure for performing unidirectional load dynamic testing of self-lubricating bearings at room temperature, elevated temperature or sub-zero temperature, dry or contaminated with fluids. The wear data from these tests is to be used for qualification and to establish bearing design criteria.
2016-07-01
Standard
J2863_201607
This SAE Standard provides the minimum requirements for Automotive or RV, 7 Position, Self-Draining Trailer Tow Connector Interface. The procedures included within this specification are intended to cover the test methods, design, and performance requirements, of the electrical interface of the 7 position trailer tow connector in low voltage (0 to 20) road vehicle applications.
2016-07-01
Standard
J2436_201607
To document test procedures and set-ups that address known failure modes for Accessory Drive automatic tensioners This SAE Standard does not encompass the pulley or pulley bearing. The sample sizes and acceptance criteria should be determined by agreement between the original equipment manufacturer (OEM) and the supplier.
2016-06-30
Standard
J1095_201606
This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing of wheels for demountable rims and hubs intended for normal highway use on trucks, buses, truck trailers, and multipurpose passenger vehicles. The hubs included have bolt circle diameters from 165.1 to 335.0 mm (6.500 to 13.189 in). It is up to each hub and/or wheel for demountable rims manufacturer to determine what test method, accelerated load factor and cycle life requirements are applicable to obtain satisfactory service life in a given application. When deviations from the procedures recommended herein are made, it is the responsibility of the hub and/or wheel for demountable rims developer to modify other parameters to obtain satisfactory service life.
2016-06-28
Standard
J2830_201606
This recommended practice describes a process for testing the comprehension of static (i.e., fixed or non-dynamic) symbols for all ground vehicles, for both OEM and aftermarket products. With advancing display technology, it is now possible to display dynamic symbols (e.g., a spinning beach ball to show that a process is ongoing, or a diagram showing energy distribution in hybrid vehicles). Such graphics are outside of the scope of this recommended practice, though extensions of this process may be useful for testing them. However, several symbols which occupy the same space on a display may change state without movement (e.g. play/pause button); these are within the scope of this recommended practice. The process described in this recommended practice includes criteria that are used to identify how well the perceived meaning matches the intended meaning for a representative sample of drivers.
2016-06-28
Standard
J1598_201606
This SAE Recommended Practice is applicable to all liquid-to-gas, liquid-to-liquid, gas-to-gas, and gas-to-liquid heat exchangers used in vehicle and industrial cooling systems. This document outlines the test to determine durability characteristics of the heat exchanger from vibration-induced loading.
2016-06-28
Standard
J304_201606
The purpose of this SAE Information Report is to describe test conditions and performance evaluation factors for both diesel and gasoline engine tests. Specifically, the tests described in this document are used to measure the engine performance requirements for engine oils described by the API Service Categories described in API Publication 1509, ASTM D 4485, SAE J183, and SAE J1423 standards, U.S. military specifications, and ILSAC GF Standards.
2016-06-27
WIP Standard
J583
This SAE standard provides test procedures, performance requirements, design guidelines and installation guidelines for front fog lamps.
2016-06-22
Standard
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable. NOTES: 1. Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard. 2. AS595 should be used for commercial aircraft hydraulic pumps. 3. This document should not be used for hydraulic pumps in Electro-Hydrostatic Actuator applications (EHAs).
2016-06-17
Standard
RB4A
A guide for the use by companies contracting for design of electronic products with the Department of Defense (DOD) and other government agencies. This Bulletin present concepts and techniques for quantifying electronic equipment reliability. The techniques are responsive to the requirements of various branches of the Department of Defense and are also useful with regard to other Government agencies (e.g., NASA).
2016-06-16
Standard
EIAIS648
This standard establishes general techniques for use in the measurement and determination of the electromagnetic emission and susceptibility characteristics of electronic, electrical, and electromechanical equipment and subsystems.
2016-06-15
Technical Paper
2016-01-1835
Albert Albers, Fabian Schille, Matthias Behrendt
Abstract In terms of customer requirements, driving comfort is an important evaluation criterion. Regarding hybrid electric vehicles (HEVs), maneuver-based measurements are necessary to analyze this comfort characteristic [1]. Such measurements can be performed on acoustic roller test benches, yielding time efficient and reproducible results. Due to full hybrid vehicles’ various operation modes, new noise and vibration phenomena can occur. The Noise Vibration Harshness (NVH) performance of such vehicles can be influenced by transient powertrain vibrations e.g. by the starting and stopping of the internal combustion engine in different driving conditions. The paper at hand shows a methodical procedure to measure and analyze the NVH of HEVs in different driving conditions.
2016-06-15
Technical Paper
2016-01-1848
Jean-Loup Christen, Mohamed Ichchou, Olivier Bareille, Bernard Troclet
Abstract The problem of noise transmission through a structure into a cavity appears in many practical applications, especially in the automotive, aeronautic and space industries. In the mean time, there is a trend towards an increasing use of composite materials to reduce the weight of the structures. Since these materials usually offer poor sound insulation properties, it is necessary to add noise control treatments. They usually involve poroelastic materials, such as foams or mineral wools, whose behaviour depends on many parameters. Some of these parameters may vary in rather broad ranges, either because of measurement uncertainties or because their values have not been fixed yet in the design process. In order to efficiently design sound protections, performing a sensitivity analysis can be interesting to identify which parameters have the most influence on the relevant vibroacoustic indicators and concentrate the design effort on them.
2016-06-14
Standard
J1859_201606
This SAE Recommended Practice establishes uniform test procedures for determining input-output characteristics for those pilot-operated and mechanically actuated, modulating-type valves and through-type valves used in the service brake control system.
Viewing 1 to 30 of 3235

Filter

  • Range:
    to:
  • Year: