Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2468
Technical Paper
2014-05-10
Hyeonu Heo, Jaehyung Ju, Doo Man Kim, Harkbong Kim
An understanding of the flow around a tire in contact with the ground is important when designing fuel-efficient tires as the aerodynamic drag accounts for about one third of an entire vehicle's rolling loss. Recently, non-pneumatic tires (NPTs) have drawn attention mainly due to their low rolling resistance associated with the use of low viscoelastic materials in their construction. However, an NPT's fuel efficiency should be re-evaluated in terms of aerodynamic drag: discrete flexible spokes in an NPT may cause more aerodynamic drag, resulting in greater rolling resistance. In this study, the aerodynamic flow around a non-pneumatic tire in contact with the ground is investigated for i) stationary and ii) rotating cases using the steady state Reynolds-Averaged Navier-Stokes (RANS) method. A sensitivity analysis was carried out with a varying mesh density. The flow into cavity by the discrete spoke geometry of the NPT does not significantly affect the overall aerodynamic drag.
Video
2014-04-14
This video summarizes Chapter 5 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include the effect of various vehicle components on performance and tire rotation, tire size, and effect on permformance.
Video
2014-04-14
This video summarizes Chapter 2 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include vehicle soiling.
Video
2014-04-14
This video summarizes Chapter 2 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated are: detecting noise sources and reducing vehicle noise.
WIP Standard
2014-04-03
This AS provides a standard method for viscosity measurements of thickened (AMS 1428) anti-icing fluids.
Magazine
2014-04-01
Methodology developed for safer hood design The methodology enables material selection and design optimization of energy absorbers for pedestrian protection based on a simple laboratory test and FE model, eliminating the need for extensive vehicle testing. Developing a winning formula It's been 20 years since the University of Michigan won a Formula SAE championship. Sick of getting smoked in recent years by top teams from Germany and the U.S., MRacing is going "big aero" for a better crack at the 2014 crown.
Technical Paper
2014-04-01
Egon Moos
Abstract In today's vehicles underbody parts are absolutely necessary to reach a certain performance level regarding fuel saving, corrosion protection, driving performance and exterior as well as interior noise. With the constant demand for additional parts, which means additional weight on the car, lightweight materials have come more and more into the focus of development work. LWRT (low weight reinforced thermoplastic) is the acronym for this material group. The ongoing success of such materials in underbody applications that compared to compact materials such as GMT (glass mat reinforced thermoplastic) is the weight saving of up to 50 %, or in other words, with LWRT you can cover twice as much surface then with GMT. The production process is compression molding, but with low pressure because LWRT-material needs only partial compact areas, most regions of these parts can have a density even below 0.5 g/cm3. Another advantage coming with the process is the possibility to use multi-cavity tools, so a high volume production becomes very economical.
Technical Paper
2014-04-01
Aleksandar Jemcov, Darrin Stephens, Chris Sideroff
Abstract Adjoint equations for the incompressible turbulent Navier-Stokes equations are presented. The main characteristic of this adjoint formulation is that it is time symmetry preserving thus kinetic energy conservative. The newly formulated equations were applied to the computation of surface shape sensitivities of an Australian V8 supercar. Three cases for the shape sensitivity were considered: sensitivity of the body, mirror, and the rear wing of the vehicle. Shape derivatives indicated that regions of large curvature, sudden changes and sharp features are responsible for the majority of the surface force sensitivity. Vector plots show the direction of change in shape required to increase the surface force. In addition, examining the rear wing shape derivatives reveal a close correlation to the flow features.
Technical Paper
2014-04-01
Asya Gabbasa, Selin Arslan, Badih Jawad, Andrew Gerhart
Abstract This paper discusses the uses of shape morphing/optimization in order to improve the lift to drag ratio for a typical 3D multi-element airfoil. A mesh morpher algorithm is used in conjunction with a direct search optimization algorithm in order to optimize the aerodynamics performance of a typical high-lift device. Navier-Stokes equations are solved for turbulent, steady-state, incompressible flow by using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent. Detailed studies are done on take-off/landing flight conditions; the results show that the optimization is successful in improving the aerodynamic performance.
Technical Paper
2014-04-01
Asya Gabbasa, Badih Jawad, Liping Liu, Selin Arslan, Andrew Gerhart
Abstract This work studies an optimization tool for 2D and 3D a multi-element airfoil which utilizes the power of CFD solver of a Shape Optimizer package to find the most optimal shape of multi-element airfoil as per designer's requirement. The optimization system coupled with Fluent increases the utilization and the importance of CFD solver. This work focuses on combining the high fidelity commercial CFD tools (Fluent) with numerical optimization techniques to morph high lift system. In this work strategy we performed morphing (grid deformation) directly inside the Fluent code without rebuilding geometry and the mesh with an external tool. Direct search method algorithms such as the Simplex, Compass, and Torczon are used; Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent. Detailed studies are done on take-off/landing flight conditions; a number of different built-in optimization algorithms and the way to best employ them are investigated.
Technical Paper
2014-04-01
Kenji Tadakuma, Takashi Sugiyama, Kazuhiro Maeda, Masashi Iyota, Masahiro Ohta, Yoshinao Komatsu
A new wind tunnel was developed and adopted by Toyota Motor Corporation in March 2013. This wind tunnel is equipped with a 5-belt rolling road system with a platform balance that enables the flow simulation under the floor and around the tires in on-road conditions. It also minimizes the characteristic pulsation that occurs in wind tunnels to enable the evaluation of unsteady aerodynamic performance aspects. This paper describes the technology developed for this new wind tunnel and its performance verification results. In addition, after verifying the stand-alone performance of the wind tunnel, a vehicle was placed in the tunnel to verify the utility of the wind tunnel performance. Tests simulated flow fields around the vehicle in on-road conditions and confirmed that the wind tunnel is capable of evaluating unsteady flows.
Technical Paper
2014-04-01
Andrew D'Hooge, Robert Palin, Luke Rebbeck, Joaquin Gargoloff, Bradley Duncan
The focus of evaluating yaw characteristics in automotive aerodynamics has been primarily with regards to the effects of crosswind on vehicle handling. However, changes to drag that the vehicle experiences due to prevalent on-road crosswind can also be significant, even at low yaw angles. Using wind tunnel testing, it is possible to quickly determine the static yaw performance of the vehicle by rotating the vehicle on a turntable to different yaw angles during a single wind tunnel run. However, this kind of testing does not account for dynamic crosswind effects or non-uniform crosswind such as with natural on-road turbulence. Alternatively, numerical simulations using computational fluid dynamics (CFD) can be used to evaluate yaw performance. In this paper, Exa's PowerFLOW is used to examine two alternative methods of simulating aerodynamic performance in the presence of realistic on-road crosswind for the Tesla Model S sedan. These methods provide reduced computational cost compared to simulating a full range of static yaw angles.
Technical Paper
2014-04-01
Yan Jiang, Jingyan Liu, Qiming Chi, Fang Lu, Bo Li, Amanda Learned, Rui Song, Heinz Friz
Abstract The recent facelift of the Chinese version of the VW Bora incorporated several changes of the styling of the upper body. In particular, front facia, A-Pillar and rear end were subject to design changes. As major effects on the aerodynamics performance were not expected, extensive wind tunnel testing for the upper body design changes was not included in the development plan except for final performance evaluation. Nevertheless, an aerodynamic study of the effects of the design changes was undertaken using a CFD based process. At the same time, the facelift offered the opportunity for reducing the aerodynamic drag by improving the underbody flow. The design of the engine undercover and the wheel spoilers were considered in this effort. For this purpose the CFD based aerodynamic study was extended to include respective design features. The whole study was carried out using a response surface method as a mathematical model to characterize and understand the effects of the design changes and their interactions.
Technical Paper
2014-04-01
Matthew Watts, Simon Watkins
For the modern Formula 1 racing car, the degradation in aerodynamic performance when following another car is well documented. The problem can be broken into two parts; firstly the wake flow generated by these vehicles and the subsequent interaction a following car has with this field. Previous research [1, 2 & 3] has focused upon investigating the later without completely characterizing the former. This paper seeks to address this deficiency with initial data from a newly commissioned 30% scale Formula One wind tunnel model built to the 2011 technical regulations. Experimentation was carried out in the Industrial Wind-Tunnel (IWT) at RMIT University. In the absence of a rolling road an elevated ground plane was implemented; the results obtained show good agreement with the limited published material available. Using a high frequency response, four-hole pressure probe the aft body flow was investigated at multiple downstream locations. Time-averaged velocity, turbulence and secondary flow vectors were plotted.
Technical Paper
2014-04-01
Jeff Howell, Kevin Garry, Jenny Holt
The influence of a large truck on the aerodynamics of a small passenger car in an overtaking manoeuvre on the motorway was considered, many years ago, during the 1970's, to be a potential problem for the vehicle aerodynamicist. The concern never became significant as vehicle architecture evolved and car weights increased. The current drive for improved fuel economy is advocating that a considerable reduction in vehicle mass is desirable and therefore it may be time to readdress the significance of the truck passing manoeuvre. A quasi-steady experiment has been undertaken at small model scale to examine the aerodynamic characteristics of a small car in proximity to a large truck. Measurements at yaw were included to crudely simulate the effects of a crosswind. The wind tunnel data is presented and the limitations of the experimental procedure are discussed. An estimate of the increased aerodynamic input on a car in a real world overtaking manoeuvre with relative velocity between the two vehicles is introduced.
Technical Paper
2014-04-01
Alexey Vdovin, Lennart Lofdahl, Simone Sebben
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle. A way of introducing ventilation torque into the driving resistance equation is discussed.
Technical Paper
2014-04-01
Daniel Wood, Martin A. Passmore, Anna-Kristina Perry
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model. This geometry is selected as a particularly powerful test case for the development and validation of numerical tools because the flow exhibits a realistic impingement and A pillar regime, significant three dimensional structures and the backlight/boot-deck exhibits a local separation and reattachment.
Technical Paper
2014-04-01
Nicholas Oettle, David Sims-Williams, Robert Dominy
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests. A new cabin noise simulation technique was developed to predict the time-varying wind noise in a vehicle using the cabin noise measured in the steady environment of the wind tunnel, and a record of the unsteady onset conditions on the road, considering each third-octave band individually.
Technical Paper
2014-04-01
Hangsheng Hou
Abstract When a window opens to provide the occupant with fresh air flow while driving, wind throb problems may develop along with it. This work focuses on an analytical approach to address the wind throb issue for passenger vehicles when a front window or sunroof is open. The first case of this paper pertains to the front window throb issue for the current Ford Escape. Early in a program stage, CAA (Computational Aeroacoustics) analysis predicted that the wind throb level exceeded the program wind throb target. When a prototype vehicle became available, the wind tunnel test confirmed the much earlier analytical result. In an attempt to resolve this issue, the efforts focused on a design proposal to implement a wind spoiler on the side mirror sail, with the spoiler dimension only 6 millimeters in height. This work showed that the full vehicle CAA analysis could capture the impact of this tiny geometry variation on the wind throb level inside the vehicle cabin. The independent wind tunnel effort came to the same conclusion, and the difference between the analysis and testing is only about 1 dB.
Technical Paper
2014-04-01
Georgios Fontaras, Panagiota Dilara, Michael Berner, Theo Volkers, Antonius Kies, Martin Rexeis, Stefan Hausberger
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck. Two different torque measurement systems (wheel rim torque sensors and half shaft torque sensors) were used for the measurements and two different vehicle tracking approaches were investigated (high precision GPS and opto-electronic barriers).
Technical Paper
2014-04-01
Suad Jakirlic, Lukas Kutej, Branislav Basara, Cameron Tropea
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991). The latter model mimics the sub-scale model in the PANS method representing a hybrid RANS/LES strategy, proposed recently by Basara et al. (2011).
Technical Paper
2014-04-01
Christopher Craig, Martin A. Passmore
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages. An initial wind tunnel investigation of the potential flow interactions between the driver's helmet and rear wing using a multi-hole pressure probe is reported and the data used in a two-dimensional CFD calculation to provide an accurate prediction of the likely down-force from the wing package.
Technical Paper
2014-04-01
Itsuhei Kohri, Teppei Yamanashi, Takayoshi Nasu, Yoshimitsu Hashizume, Daichi Katoh
On a bluff body which has a slant surface on the rear upper part, it is well known that the drastic change of a wake structure behind the rear body occurs at 30°of the slant angle. Originally, this critical phenomenon was pointed out by L.J. Janssen, W.H. Hucho, and H.J. Emmelmann in the middle of the 1970s. In 1984, S.R. Ahmed conducted systematic measurements by changing the rear slant angle of the bluff body, called the “Ahmed Body”, to find the critical phenomenon. In the 2000s, D.B. Sims-Williams found that the Ahmed Body had vortex structures which had specific frequencies. However, the relationship between the critical phenomenon and the unsteady behaviour has not been clarified yet. Therefore, as the first step of this study, we measured the unsteady wake behaviour for various slant angles to find the relationship between the Strouhal number and the angle. The characteristics of the fluctuation were captured with two hot-wires. By analysing the coherence and difference of the phases of their signals, the behaviour of the trailing vortices and the vortex shedding of the wake was investigated.
Viewing 1 to 30 of 2468

Filter

  • Range:
    to:
  • Year: