Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3554
Training / Education
2015-06-16
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena. Engineering fundamentals are discussed and illustrated with numerous practical examples and case studies of current public interest. The Pneumatic Tire, a 700-page E-book on CD, edited by Joseph Walter and Alan Gent is included in the course material. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 7 Continuing Education Units (CEUs). Upon completion of this seminar, accredited reconstructionists should contact ACTAR, 800-809-3818, to request CEUs.
Training / Education
2015-05-18
Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics. A series of case studies related to truck ride engineering will provide an opportunity for attendees to demonstrate their knowledge gained and introduces them to some of the newer technologies related to evaluating and improving heavy truck ride dynamics. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 15 Continuing Education Units (CEUs). Upon completion of this seminar, accredited reconstructionists should contact ACTAR, 800-809-3818, to request CEUs.
Training / Education
2014-12-04
This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the "A Familiarization of Drivetrain Components" seminar (which is designed for those who have limited experience with the total drivetrain).
Event
2014-11-18
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
Event
2014-11-18
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
Event
2014-11-18
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
Training / Education
2014-11-17
While a variety of new engineering tools are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to ensure desired braking, handling, and other dynamic response characteristics. In order to better prepare today's engineer for this task, this course offers twelve modules devoted to the key fundamental principles associated with longitudinal and lateral vehicle dynamics. Each focused classroom session is paired with an on-track exercise to immediately reinforce these concepts with a dedicated behind-the-wheel driving session, effectively illustrating these principles in the real world. Note that unlike most driving schools, this course is not designed to train performance drivers. Rather, the exercises on days one and two build the bridge between vehicle dynamics theory and practical application by providing a rich academic underpinning and then reinforcing it with highly focused and relevant driving experiences.
Training / Education
2014-11-12
Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems. Emphasizing the fundamental principles that underlie rational development and design of suspension components and structures, this course covers the concepts, theories, designs and applications of automotive suspension systems.
Training / Education
2014-10-29
This interactive seminar will take you beyond the basics of passenger car and light truck vehicle dynamics by applying advanced theory, physical tests and CAE to the assessment of ride, braking, steering and handling performance. Governing state-space equations with transfer functions for primary ride and open loop handling will be developed & analyzed. Building on the analysis of the state space equations, common physical tests and their corresponding CAE solutions for steady state and transient vehicle events will be presented. The "state-of-the-art" of vehicle dynamics CAE will be discussed. Common lab and vehicle tests and corresponding metrics used to assess chassis system and vehicle performance will be discussed in great detail. Hands-on workshops using CARSIMTM vehicle dynamics simulation software will help reinforce the material. Significant time will also be dedicated to the use of design of experiments (DOE) as a tool to assist in the analysis and optimization of chassis systems for multiple vehicle responses.
Training / Education
2014-10-20
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions. Manual and computer techniques for analysis and evaluation are presented. Vehicle system dynamic performance in the areas of drive-off, braking, directional control and rollover is emphasized. The dynamics of the powertrain, brakes, steering, suspension and wheel and tire subsystems and their interactions are examined along with the important role of structure and structural parameters related to vehicle dynamics.
Event
2014-10-09
This session focuses on theoretical and experimental vehicle dynamics aspects of both on- and off-road vehicles. Papers on topics such as off-road vehicle chassis and suspension, NVH, driver/operator comfort, as well as on-road suspension design, active and semi-active suspension systems and controls, and full vehicle dynamic studies are welcomed. Topics ranging from on-road vehicles to trucks to construction and mining machinery are covered in CV205.
Training / Education
2014-10-06
The vehicle-terrain interaction in an off-road environment creates unique challenges for designers of both wheeled and tracked off-road vehicles. Not only should vehicle designers have a working knowledge of the fundamentals of on-road vehicle dynamics, they should also have the specialized knowledge of the vehicle dynamic characteristics found in construction, agriculture, and military off-road vehicles. This one-day seminar concentrates on the basics of off-highway trucks and the differences with their on-highway counterparts. Emphasized in the course are the practical and theoretical aspects of off-highway trucks as it relates to various components and subsystems, including tires, steering system, and suspensions. The course will also highlight how various components and subsystems dynamically interact with each other, and how their collective interaction is manifested in the overall vehicle dynamics. This seminar presents the specialized aspects of off-highway truck dynamics and assumes participants already have an understanding of heavy truck dynamics, either as presented through the SAE Fundamentals of Heavy Truck Dynamics seminar or experience gained through on-the-job training.
Technical Paper
2014-09-30
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Road trains have been applied as one of the efficient ways for transportation of goods in different countries like United States, Canada, Brazil and Australia. These long vehicles have a wide variety in length or towing systems like fifth wheel or dolly draw-bar and based on specific measured and regulation could be authorized to move in specific roads. In order to avoid hazard and danger in case of accidents of these vehicles, safety performance of a specific type of these vehicles, called B-train, is investigated in this paper. A Multi-Body Dynamics (MBD) model of a B-train, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in first phase of study. The developed dynamic model is capable of simulating required tests as well as SAE lane change and constant radius turn for roll and yaw stability analysis and safety evaluation. As far as transportation of fuel or other hazardous liquid are a common usage of B-train vehicles, the effects of liquid fill level variation are also considered in this research.
Technical Paper
2014-09-30
Vladimir V. Vantsevich, Jeremy P. Gray, Dennis Murphy
Through inverse dynamics-based modeling and computer simulations for a 6x6 unmanned ground vehicle in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle’s dynamics through the distribution of the wheel’s normal reactions and wheel torques. The interference causes the dynamics of the independent systems to become operationally coupled/fused, and thus diminishes the vehicle’s mobility and energy efficiency. The analysis is achieved by the use on new mobility indices and energy efficiency indices which are functionally coupled/fused. Four possible scenarios are considered to trade between mobility and energy efficiency improvements by re-distributing power between the drive axles in severe/extreme terrain conditions, including poor mu-conditions, and high longitudinal and lateral slopes.
Technical Paper
2014-09-30
Xianjian Jin, Guo-Dong Yin, Youyu Lin
Knowledge of vehicle dynamics variables is very important for vehicle control systems that aim to improve handling characteristics and passenger safety. However for both technical and economical reasons some fundamental data (e.g., Lateral tire-road forces and vehicle sideslip angle) are not measurable in a standard car. This paper proposes a novel Interacting Multiple Model Filter-Based method to estimate lateral tire-road forces by utilizing real-time measurements. The method uses measurements (yaw rate, roll rate, accelerations, steering angle and wheel speed) only from sensors which have already been integrated in modern cars. The estimation method of lateral tire-road forces is based on an interacting multiple model (IMM) filter that integrates in-vehicle sensors of in-wheel-motor-driven electric vehicles to adapt multiple vehicle-road system models to variable driving conditions. Considering extended roll dynamics and load transfer, a four-wheel nonlinear vehicle dynamics model (NVDM) is built.
Technical Paper
2014-09-30
Yiting Kang, Subhash Rakheja, Wenming Zhang
Different types of axle suspension systems have evolved for large size mining trucks to achieve improved attenuation of terrain-induced whole-body vibration (WBV) transmitted to the operator and to attain higher operating speeds. The hydro-pneumatic struts are increasingly being used together with different linkage configurations, which could yield widely different kinematic and dynamic properties and thereby the ride and handling performance of the vehicle. This paper presents comprehensive analyses of the different independent front suspension linkages that have been implemented in various off-road vehicles, namely a composite linkage Macpherson strut type suspension (CLT), a candle type suspension (CT), a longitudinal arm type suspension (LAT), and a double wishbone type suspension (DWT). The relative performance analyses are evaluated on the basis of handling dynamics of a 190 tons mining truck. The kinematic variations in camber, caster, inclination angle, toe-in and horizontal wheel center displacements of different linkage suspensions are synthesized via wheel bounce excitations in the MapleSim platform.
Viewing 1 to 30 of 3554

Filter

  • Range:
    to:
  • Year: