Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3656
2016-12-05 ...
  • December 5, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar provides an introduction to several critical aspects of heavy truck dynamics. The comprehensive presentation and discussion will begin with the mechanics and dynamics of heavy truck tires, followed by steering dynamics, and finally moves participants into suspension kinematics and dynamics. Starting at the ground and moving up, this seminar explores the important dynamic aspects of each subsystem and how each is related to the overall truck dynamics.
2016-06-14 ...
  • June 14, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
2016-04-12
Event
Multibody system modeling and simulation, rigid and flexible body modeling, loads predictions for vehicle body, frame/sub-frame, exhaust system, driveline, and powertrain, modeling of vehicle dynamics simulation and durability loads simulation, process considering vehicle dynamics and durability loads, data processing and analysis, loads sensitivity analyses for model parameters, design load minimization, prediction of loads effects, robust design methods, driver modeling, and system modeling.
2016-04-12
Event
This session focuses on analysis and enhancement of vehicle dynamics performance including handling/ braking/ traction characteristics as well as robustness and active stability under the influence of loading, tire forces and intelligent tire technology for enhancing overall vehicle system dynamics and safety characteristics and robustness. Load variations and other uncertainties, impact of system hybridization and electrification on vehicle dynamics and controls will be discussed.
2016-04-12
Event
This session focuses on design and analysis features that deal with vehicle motions associated with ride and ride quality. Both analytical and experimental approaches are considered, and the session generally develops into a valuable discussion of the principal efforts underway to improve ride quality in passenger vehicles, although other types of vehicles are welcome and encouraged.
2016-04-12
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2016-04-12
Event
This session deals with the analytical and experimental studies of vehicle electric drive vehicles or any non-conventional vehicle concepts that stretch the vehicle dynamics/mobility performance using intelligent technologies such as in-wheel motors, torque-vectoring controls, multi-wheel steer-by-wire, etc.
2015-12-11 ...
  • December 11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • June 30, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The vehicle-terrain interaction in an off-road environment creates unique challenges for designers of both wheeled and tracked off-road vehicles. Not only should vehicle designers have a working knowledge of the fundamentals of on-road vehicle dynamics, they should also have the specialized knowledge of the vehicle dynamic characteristics found in construction, agriculture, and military off-road vehicles. This one-day seminar concentrates on the basics of off-highway trucks and the differences with their on-highway counterparts.
2015-12-08 ...
  • December 8-10, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • June 27-29, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2015-11-16 ...
  • November 16-18, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • May 23-25, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 14-16, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today’s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
2015-11-04 ...
  • November 4-6, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • May 9-11, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 21-23, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems. Emphasizing the fundamental principles that underlie rational development and design of suspension components and structures, this course covers the concepts, theories, designs and applications of automotive suspension systems.
2015-10-16 ...
  • October 16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • March 31, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 28, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the "A Familiarization of Drivetrain Components" seminar (which is designed for those who have limited experience with the total drivetrain).
2015-10-06
Event
This session focuses on theoretical and experimental vehicle dynamics aspects of both on- and off-road vehicles. Papers on topics such as off-road vehicle chassis and suspension, NVH, driver/operator comfort, as well as on-road suspension design, active and semi-active suspension systems and controls, and full vehicle dynamic studies are welcomed. Topics ranging from on-road vehicles to trucks to construction and mining machinery are covered in CV205.
2015-10-05 ...
  • October 5-7, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 11-13, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • August 10-12, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 12-14, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
2015-09-29
Technical Paper
2015-01-2745
Florian Bauer, Jan Fleischhacker
A Hardware-in-the-Loop (HiL) system for Electronic Control Units (ECU) of electro-pneumatic brake systems is presented. The HiL system runs a real-time capable vehicle model comprising of both the vehicle dynamics and the electro-pneumatic brake system. The dynamic behaviour of the vehicle can be simulated either by a real-time multi-body vehicle model or by a simpler system dynamic (double-track) model. To assess the quality of the system dynamic vehicle model, it was compared to the multi-body vehicle model which was validated with comprehensive experimental results. Discrepancies can be seen for highly unsteady manoeuvres. Reasons for these discrepancies caused by the modelling topology of the system dynamic vehicle model will be given. In order to simulate the electro-pneumatic brake system, a real-time model has been developed and validated. The different topologies of brake systems can be assembled from components and integrated into the vehicle model.
2015-09-29
Technical Paper
2015-01-2842
Hongyu Zheng, Jinghuan Hu, Shenao Ma
By reviewing the previous research, we put the stability of tractor trailer into two categories, roll stability and yaw stability, and identify the indicators of two kinds of stability. Further we came up with three normal stability loss situations. They are roll-over, jack-knife and trailer swing. This work extends previous tractor trailer stability research from roll stability to roll/yaw stability; moreover, we set up the object of our investigation, that is enhance the tractor-trailer stability by reducing the occurrence of three stability loss. Based on the tractor semi-trailer model built in MATLAB, we made research on how the vehicle parameters affect the entire vehicle dynamic stability. In this section, we modified the model by changing a more sophisticated tire model. This work will benefit the commercial vehicle designer in the early stage of vehicle designing.
2015-09-28 ...
  • September 28-30, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • March 9-11, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 19-21, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This interactive seminar will take you beyond the basics of passenger car and light truck vehicle dynamics by applying advanced theory, physical tests and CAE to the assessment of ride, braking, steering and handling performance. Governing state-space equations with transfer functions for primary ride and open loop handling will be developed & analyzed. Building on the analysis of the state space equations, common physical tests and their corresponding CAE solutions for steady state and transient vehicle events will be presented. The "state-of-the-art" of vehicle dynamics CAE will be discussed.
2015-09-14 ...
  • September 14-17, 2015 (8:30 a.m. - 4:30 p.m.) - Greenville, South Carolina
Training / Education Classroom Seminars
                                                                 Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2015-09-06
Technical Paper
2015-24-2529
Riccardo Russo, Salvatore Strano, Mario Terzo
A new controllable limited slip differential is proposed and tested in software environment. It is characterized by the employment of a magnetorheological fluid, which presents the property of changing its rheology thanks to an applied magnetic field. A vehicle model has been designed and employed for the synthesis of a sliding controller. The control is based on a double level scheme: the upper controller aims to generate the target locking torque, while the lower controller generates, as control action, the supply current for the controllable limited slip differential. The obtained results show the effectiveness of the device in terms of vehicle dynamics improvement. Indeed, the results reached by the vehicle in presence of the new differential confirm the improved performances for both steady and unsteady state manoeuvres.
2015-09-01
Journal Article
2015-01-9113
Rui Ma, Philip Chin, John B. Ferris, Cannon Cheng, Eric neisen, Alexander Reid
Abstract The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
2015-07-01
Journal Article
2015-01-9111
Lasse G. Andersen, Jesper K. Larsen
Abstract Coast-down modeling has been widely used to assess vehicle aerodynamic drag and rolling resistance by fitting a vehicle resistance model to speed measurements and thereby get an estimate on model parameters. Here a coast-down model is used for assessing how road surface characteristics influence rolling resistance. Parameter estimation as well as an extensive perturbation analysis of the parameter fit with respect to data noise has been performed. Functional Data Analysis (FDA) is introduced and discussed as a tool for this. It is concluded that FDA is a powerful tool for 1) approximating derivatives, 2) assessing the degree of smoothing of the data 3) handling noise sources in the perturbation analysis and 4) enabled numerical solutions of the coast-down Ordinary Differential Equation (ODE) model. Investigations showed that MPD was the most important parameter compared to IRI although MPD data required smoothing for optimal model fit.
2015-07-01
Journal Article
2015-01-9112
Shahyar Taheri, Terence Wei
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
2015-06-30
Standard
J1808_201506
This document applies to direct acting vacuum power assist brake boosters only, exclusive of the master cylinder or other brake system prime mover devices for passenger cars and light trucks [4500 kg GVW (10 000 lb)]. It specifies the test procedure to determine minimum performance and durability characteristics.
2015-06-29
WIP Standard
J1555
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only, some operations for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.), and some for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
Viewing 1 to 30 of 3656

Filter

  • Range:
    to:
  • Year: