Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3536
Training / Education
2014-12-04
This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the "A Familiarization of Drivetrain Components" seminar (which is designed for those who have limited experience with the total drivetrain).
Training / Education
2014-10-20
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions. Manual and computer techniques for analysis and evaluation are presented. Vehicle system dynamic performance in the areas of drive-off, braking, directional control and rollover is emphasized. The dynamics of the powertrain, brakes, steering, suspension and wheel and tire subsystems and their interactions are examined along with the important role of structure and structural parameters related to vehicle dynamics.
Training / Education
2014-10-06
The vehicle-terrain interaction in an off-road environment creates unique challenges for designers of both wheeled and tracked off-road vehicles. Not only should vehicle designers have a working knowledge of the fundamentals of on-road vehicle dynamics, they should also have the specialized knowledge of the vehicle dynamic characteristics found in construction, agriculture, and military off-road vehicles. This one-day seminar concentrates on the basics of off-highway trucks and the differences with their on-highway counterparts. Emphasized in the course are the practical and theoretical aspects of off-highway trucks as it relates to various components and subsystems, including tires, steering system, and suspensions. The course will also highlight how various components and subsystems dynamically interact with each other, and how their collective interaction is manifested in the overall vehicle dynamics. This seminar presents the specialized aspects of off-highway truck dynamics and assumes participants already have an understanding of heavy truck dynamics, either as presented through the SAE Fundamentals of Heavy Truck Dynamics seminar or experience gained through on-the-job training.
Training / Education
2014-07-22
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena. Engineering fundamentals are discussed and illustrated with numerous practical examples and case studies of current public interest. The Pneumatic Tire, a 700-page E-book on CD, edited by Joseph Walter and Alan Gent is included in the course material. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 7 Continuing Education Units (CEUs). Upon completion of this seminar, accredited reconstructionists should contact ACTAR, 800-809-3818, to request CEUs.
Training / Education
2014-05-28
This interactive seminar will take you beyond the basics of passenger car and light truck vehicle dynamics by applying advanced theory, physical tests and CAE to the assessment of ride, braking, steering and handling performance. Governing state-space equations with transfer functions for primary ride and open loop handling will be developed & analyzed. Building on the analysis of the state space equations, common physical tests and their corresponding CAE solutions for steady state and transient vehicle events will be presented. The "state-of-the-art" of vehicle dynamics CAE will be discussed. Common lab and vehicle tests and corresponding metrics used to assess chassis system and vehicle performance will be discussed in great detail. Hands-on workshops using CARSIMTM vehicle dynamics simulation software will help reinforce the material. Significant time will also be dedicated to the use of design of experiments (DOE) as a tool to assist in the analysis and optimization of chassis systems for multiple vehicle responses.
Training / Education
2014-05-19
While a variety of new engineering tools are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to ensure desired braking, handling, and other dynamic response characteristics. In order to better prepare today's engineer for this task, this course offers twelve modules devoted to the key fundamental principles associated with longitudinal and lateral vehicle dynamics. Each focused classroom session is paired with an on-track exercise to immediately reinforce these concepts with a dedicated behind-the-wheel driving session, effectively illustrating these principles in the real world. Note that unlike most driving schools, this course is not designed to train performance drivers. Rather, the exercises on days one and two build the bridge between vehicle dynamics theory and practical application by providing a rich academic underpinning and then reinforcing it with highly focused and relevant driving experiences.
Training / Education
2014-05-19
Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics. A series of case studies related to truck ride engineering will provide an opportunity for attendees to demonstrate their knowledge gained and introduces them to some of the newer technologies related to evaluating and improving heavy truck ride dynamics. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 15 Continuing Education Units (CEUs). Upon completion of this seminar, accredited reconstructionists should contact ACTAR, 800-809-3818, to request CEUs.
Technical Paper
2014-05-10
Daogao Wei, Peng Wang, Zhijie Pan, Siming Hu, Huaiyang Xiao
Tie rod end clearance is an important parameter influencing automobile stability under slalom maneuver. In this paper the steering mechanism is simplified into a plane linkage mechanism and an analysis of the effects on vehicle stability exerted by kinematic pair clearance under slalom maneuver is also presented. A 4DOF mathematical model of vehicle maneuvering system is thus being built. On the basis of this model, we adopt the numerical analysis method to conduct a simulated analysis about the stability of prototype vehicle side slip angle as the clearance parameter changes. According to the results, vehicle slalom dynamics behaviors manifest itself in shifting from single cycle to chaos directly. With the increase in clearance, nearly no change is displayed in the upper critical frequency of vehicle slalom instability. However, an increasing rise is shown in the lower critical frequency. The instability frequency bandwidth, accordingly, bears an increase as well and a marked difference manifests itself with regard to the characteristics of window dynamics in chaotic areas.
Viewing 1 to 30 of 3536

Filter

  • Range:
    to:
  • Year: