Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3566
2015-06-18 ...
  • June 18, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The vehicle-terrain interaction in an off-road environment creates unique challenges for designers of both wheeled and tracked off-road vehicles. Not only should vehicle designers have a working knowledge of the fundamentals of on-road vehicle dynamics, they should also have the specialized knowledge of the vehicle dynamic characteristics found in construction, agriculture, and military off-road vehicles. This one-day seminar concentrates on the basics of off-highway trucks and the differences with their on-highway counterparts. Emphasized in the course are the practical and theoretical aspects...
2015-06-16 ...
  • June 16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena. Engineering fundamentals...
2015-06-15 ...
  • June 15-17, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics. A series of case studies related to truck ride engineering...
2015-04-01 ...
  • April 1-3, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 5-7, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions. Manual...
2014-12-04 ...
  • December 4, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 22, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer...
2014-11-20
Event
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
2014-11-19
Event
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
2014-11-19
Event
This session will focus on the application of technology to improve the stability, handling, ride and comfort of two and three wheeled vehicles.
2014-11-17 ...
  • November 17-19, 2014 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • May 18-20, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 16-18, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering tools are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to ensure desired braking, handling, and other dynamic response characteristics. In order to better prepare today's engineer for this task, this course offers twelve modules devoted to the key fundamental principles associated with longitudinal and lateral vehicle dynamics. Each focused classroom session is paired with an on-track exercise to immediately reinforce these concepts with a dedicated behind-the-wheel driving session,...
2014-11-12 ...
  • November 12-14, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 22-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 4-6, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems. Emphasizing the fundamental principles...
2014-11-11
Technical Paper
2014-32-0017
R Varunprabhu, Himadri Bushan Das, S Jabez Dhinagar
The steering system of a 3-wheeler vehicle comprises a single column steering tube. The steering inclination at handle bar end is converted to wheel slip or inclination by the steering column. A compromise in either ride or handling is considered in the functional requirement of the 3-wheeler vehicle. The three wheeled vehicle under study is designed for ride comfort and the handling levels are compromised. Variants of the vehicle under study are meant for public passenger transport requirements. Drivers’ ride comfort is considered as the primary functional requirement during design and driver’s steering fatigue is not given importance. For the comfort of driver, steering effort has to be less without compromise in handling characteristics. The driver of this type of vehicle drives the vehicle for 15-18 hours a day. Driver’s feedback suggests high steering effort as a human fatigue failure mode and also a cause of shoulder pain. In this project, a DC motor assisted steering mechanism with an electronic control module has been designed.
2014-11-11
Technical Paper
2014-32-0022
Federico Giovannini, Niccolò Baldanzini, Marco Pierini
Abstract Powered Two-Wheelers (PTW) control is more complex than any other motorized vehicle control, in particular during emergency events, such as panic braking or last second swerving. For standard PTW, a common cause of accident in these situations is the loss of stability due to braking maneuvers. It is worth noting that for PTW the loss of stability means a high probability of fall, especially while cornering. Accordingly, the aim of this study is to propose a fall detection algorithm for PTW performing maneuvers leading to potential instability. The algorithm is composed of a number of parameters, named RISKi, able to detect potential fall events, critical for PTW safety. This fall detection methodology was developed to alert an advanced riding assistance system in order to produce proper counteractions against the imminent fall. The parameters designed for the fall detection process take into account the vehicle destabilization due to the braking intensity and due to heavy oscillations of the vehicle body and the steering bar.
2014-11-11
Technical Paper
2014-32-0021
Kazuhiro Ito, Yoshitaka Tezuka, Atsushi Hoshino, Keita Sakurada
Abstract In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom. Based on this investigation, the degree of freedom of three, i.e. vertical, longitudinal and forward leaning motions, was adopted to the rider model.
2014-10-29 ...
  • October 29-31, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 29-May 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 28-30, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This interactive seminar will take you beyond the basics of passenger car and light truck vehicle dynamics by applying advanced theory, physical tests and CAE to the assessment of ride, braking, steering and handling performance. Governing state-space equations with transfer functions for primary ride and open loop handling will be developed & analyzed. Building on the analysis of the state space equations, common physical tests and their corresponding CAE solutions for steady state and transient vehicle events will be presented. The "state-of-the-art" of vehicle dynamics CAE will be discussed....
2014-10-28
Event
2014-10-21
Standard
J3006_201410
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice. Consistency and margin of pass/fail of the minimum requirements related to wear rates and wear behavior can be assessed as part of the project in coordination with the test requestor.
2014-10-21
Standard
J2417_201410
This SAE Standard provides a uniform method to calculate the lift capacity of knuckle-boom log loaders and certain forestry equipment. It establishes definitions and specifies machine conditions for calculations. This document applies to knuckle-boom log loaders as defined in ISO 6814 and ISO 17591 and certain forestry equipment defined in ISO 6814 that have a rotating upper-structure such as feller bunchers, forwarders, harvesters, and behind the cab or rear-mounted knuckle-boom log loaders not having their own power supply. It does not apply to harvesters that are incapable of lifting a tree or log completely off the ground. This document applies to those machines that are crawler, rubber-tired, and pedestal or stationary mounted.
2014-10-14
Event
2014-10-09
Event
This session focuses on theoretical and experimental vehicle dynamics aspects of both on- and off-road vehicles. Papers on topics such as off-road vehicle chassis and suspension, NVH, driver/operator comfort, as well as on-road suspension design, active and semi-active suspension systems and controls, and full vehicle dynamic studies are welcomed. Topics ranging from on-road vehicles to trucks to construction and mining machinery are covered in CV205.
2014-10-09
WIP Standard
J1698/3
This SAE Recommended Practice defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214 and other applicable vehicle level crash testing.
2014-10-07
Event
Viewing 1 to 30 of 3566

Filter

  • Range:
    to:
  • Year: