Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3709
2016-12-05 ...
  • December 5, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar provides an introduction to several critical aspects of heavy truck dynamics. The comprehensive presentation and discussion will begin with the mechanics and dynamics of heavy truck tires, followed by steering dynamics, and finally moves participants into suspension kinematics and dynamics. Starting at the ground and moving up, this seminar explores the important dynamic aspects of each subsystem and how each is related to the overall truck dynamics.
2016-09-28 ...
  • September 28, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the "A Familiarization of Drivetrain Components" seminar (which is designed for those who have limited experience with the total drivetrain).
2016-09-19 ...
  • September 19-21, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This interactive seminar will take you beyond the basics of passenger car and light truck vehicle dynamics by applying advanced theory, physical tests and CAE to the assessment of ride, braking, steering and handling performance. Governing state-space equations with transfer functions for primary ride and open loop handling will be developed & analyzed. Building on the analysis of the state space equations, common physical tests and their corresponding CAE solutions for steady state and transient vehicle events will be presented. The "state-of-the-art" of vehicle dynamics CAE will be discussed.
2016-08-10 ...
  • August 10-12, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 12-14, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
2016-06-14 ...
  • June 14, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
2016-06-09 ...
  • June 9, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The vehicle-terrain interaction in an off-road environment creates unique challenges for designers of both wheeled and tracked off-road vehicles. Not only should vehicle designers have a working knowledge of the fundamentals of on-road vehicle dynamics, they should also have the specialized knowledge of the vehicle dynamic characteristics found in construction, agriculture, and military off-road vehicles. This one-day seminar concentrates on the basics of off-highway trucks and the differences with their on-highway counterparts.
2016-06-06 ...
  • June 6-8, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2016-05-23 ...
  • May 23-25, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 14-16, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today’s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
2016-05-09 ...
  • May 9-11, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 21-23, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems. Emphasizing the fundamental principles that underlie rational development and design of suspension components and structures, this course covers the concepts, theories, designs and applications of automotive suspension systems.
2016-04-27
Standard
J2530_201604
This SAE Recommended Practice provides performance, sampling, and certifying requirements, test procedures, and marking requirements for aftermarket wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicles. For aftermarket wheels on trailers drawn by passenger cars, light trucks or multipurpose vehicles, see SAE J1204. These performance requirements apply only to wheels made of materials included in Table 1 and Table 2. New nomenclature and terms are added to clarify wheel constructions typically not used in OEM applications. The testing procedures and requirements are based on SAE standards listed in the references.
2016-04-15
Journal Article
2015-01-9020
Emre Sert, Pinar Boyraz
Abstract Studies have shown that the number of road accidents caused by rollover both in Europe and in Turkey is increasing [1]. Therefore, rollover related accidents became the new target of the studies in the field of vehicle dynamics research aiming for both active and passive safety systems. This paper presents a method for optimizing the rear suspension geometry using design of experiment and multibody simulation in order to reduce the risk of rollover. One of the major differences of this study from previous work is that it includes statistical Taguchi method in order to increase the safety margin. Other difference of this study from literature is that it includes all design tools such as model validation, optimization and full vehicle handling and ride comfort tests. Rollover angle of the vehicle was selected as the cost function in the optimization algorithm that also contains roll stiffness and height of the roll center.
2016-04-14
Event
Multibody system modeling and simulation, rigid and flexible body modeling, loads predictions for vehicle body, frame/sub-frame, exhaust system, driveline, and powertrain, modeling of vehicle dynamics simulation and durability loads simulation, process considering vehicle dynamics and durability loads, data processing and analysis, loads sensitivity analyses for model parameters, design load minimization, prediction of loads effects, robust design methods, driver modeling, and system modeling.
2016-04-14
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2016-04-13
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2016-04-13
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2016-04-12
Event
This session deals with the analytical and experimental studies of vehicle electric drive vehicles or any non-conventional vehicle concepts that stretch the vehicle dynamics/mobility performance using intelligent technologies such as in-wheel motors, torque-vectoring controls, multi-wheel steer-by-wire, etc.
2016-04-12
Event
This session focuses on analysis and enhancement of vehicle dynamics performance including handling/ braking/ traction characteristics as well as robustness and active stability under the influence of loading, tire forces and intelligent tire technology for enhancing overall vehicle system dynamics and safety characteristics and robustness. Load variations and other uncertainties, impact of system hybridization and electrification on vehicle dynamics and controls will be discussed.
2016-04-12
WIP Standard
J1594
This terminology is intended to provide a common nomenclature for use in publishing road vehicle aerodynamics data and reports.
2016-04-05
Journal Article
2016-01-0433
Tao Sun, Eungkil Lee, Yuping He
Abstract This paper presents nonlinear bifurcation stability analysis of articulated vehicles with active trailer differential braking (ATDB) systems. ATDB systems have been proposed to improve stability of articulated vehicle systems to prevent unstable motion modes, e.g., jack-knifing, trailer sway and rollover. Generally, behaviors of a nonlinear dynamic system may change with varying parameters; a stable equilibrium can become unstable and a periodic oscillation may occur or a new equilibrium may appear making the previous equilibrium unstable once the parameters vary. The value of a parameter, at which these changes occur, is known as “bifurcation value” and the parameter is known as the “bifurcation parameter”. Conventionally, nonlinear bifurcation analysis approach is applied to examine the nonlinear dynamic characteristics of single-unit vehicles, e.g., cars, trucks, etc.
2016-04-05
Journal Article
2016-01-1136
Amedeo Tesi, Francesco Vinattieri, Renzo Capitani, Claudio Annicchiarico
Abstract The Electro actuated Limited Slip Differential (e-LSD) can help increasing the dynamic features of the vehicle, but to implement a well designed control logic it is necessary a deep knowledge of the actual friction torque built up by the differential clutch. This work presents the development of such a control law that takes into account the wear depth progression. To carry out this task, an alternative method has been used to study the clutch discs engagement depending on the wear rate. The method takes advantages from a mixed approach with a numerical and an experimental part. Using a general purpose block-on-ring test bench, the tribologic analyses were performed following the ASTM G77 standard; thus, the friction coefficient has been investigated in the contact between discs with molybdenum treatment and steel alloy discs, as well as its variation depending on the wear rate.
2016-04-05
Technical Paper
2016-01-0029
Chuanliangzi Liu, Bo Chen, Ming Cheng, Anthony Champagne, Keyur Patel
Abstract The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
Viewing 1 to 30 of 3709

Filter

  • Range:
    to:
  • Year: