Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3562
2016-11-08
Technical Paper
2016-32-0060
Ashish Jain, Sahil Kapahi
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the powertrain is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUM Lap software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modelled using 1D simulation on RICARDO Wave.
2016-10-24
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2016-10-18 ...
  • October 18-19, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
2016-10-17
Technical Paper
2016-01-2160
Alexander Bech, Paul J. Shayler, Michael McGhee
The application of cylinder deactivation technology to small, three cylinder spark ignition engines has the potential to further improve the part load fuel economy of these downsized engines. Although the technology is well established and proven for larger multi-cylinder engines, this is not the case for the class of 1.0litre, three cylinder engines produced by several OEM’s for use in small cars. Deactivating one cylinder by leaving the intake and exhaust valves closed and cutting fuelling requires the other two cylinders to produce more work output to compensate. This changes the distribution of heat rejection to the engine structure. The resulting increases in temperature gradients within the engine structure, and transient response times for thermal adjustments following deactivation or reactivation are examples of the uncertainties which the work reported addresses.
2016-10-17
Technical Paper
2016-01-2166
Ahfaz Ahmed, Muhammad Waqas, Nimal Naser, Eshan Singh, William Roberts, Sukho Chung, Mani Sarathy
Commercial gasoline fuels contain hundreds of different hydrocarbons, yet despite their dissimilarity in composition they often demonstrate similar octane ratings. It is of fundamental interest to study differences arising in combustion performance of such fuels, specifically fuels have varying physical properties. This investigation is needed to interpret differences in combustion behavior of gasolines showing similar knocking character in a cooperative fuel research engine, but demonstrating different attributes in a direct injection spark ignition (DISI) engines due to the enhanced effects of fuel properties To investigate this scenario two FACE (Fuels for advanced combustion engines) gasolines, FACE F and FACE G with similar Research and Motor octane but differing physical and chemical properties were studied in a DISI engines.
2016-10-17
Technical Paper
2016-01-2328
Edward Chappell, Richard Burke, Pin Lu, Michael Gee, Rod Williams
The discrepancies between certification and on-road vehicle performance is becoming increasingly important as emissions and fuel consumption estimates are proving inaccurate predictors of in-service behaviour. The objective of this paper is to identify and analyse these differences and the work forms the first phase of a project aiming to create new, highly repeatable test methods to measure very small differences in powertrain performance whilst being representative of real world conditions. These new methodologies will be developed on an advanced chassis dynamometer facility and facilitate the development of future fuel technologies focussed on delivering real world benefits. The engine controller of a 2.0L Diesel vehicle with active de-NOx and particular filter (DPF) has been monitored over WLTC and NEDC cycles and 12000km of on-road driving. Different filtering and data representation methods are compared to aid in the analysis and understanding of on-road data.
2016-10-17
Technical Paper
2016-01-2226
Mohammad Alzorgan, Joshua Carroll, Essam Al-Masalmeh, Abdel raouf Turki Mayyas
Advanced Driver Assistance Systems (ADAS) is an essential aspect of the automotive technology in this era of technological revolution, where the goal is to make vehicles more convenient, safe, and energy efficient. Taking advantage of more degrees of freedom available within vehicle “energy management” allows more margin to maximize efficiency in the propulsion systems. It is envisioned by this research that future fuel economy regulations will consider the potential benefits of emerging connectivity and automation technologies of vehicle’s fuel consumption. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevation are obtained by use of Geographic Information System (GIS) maps in order to optimize the controller. The optimization is then reflected on the powertrain of the vehicle. The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade.
2016-10-17
Technical Paper
2016-01-2316
Sanjeev Kumar singh, Shyam Singh, Ajay Kumar Sehgal
Global Fuel Economy Initiative with a goal to make automobiles worldwide 50 percent more efficient by the year 2050, enhanced interest in improvements of fuel economy and emission reduction from vehicles through engine technologies, lubricants and after treatment devices. Low viscosity grade engine oils can improve the fuel economy by reducing the friction and lower the greenhouse gases. In this study, low viscosity grade oils - 0W-20, 5W-30 and 20W-40 were selected for assessing fuel economy of diesel engines. Effects of viscosity on engine performance with respect to power, fuel economy and emissions were assessed by conducting fuel economy tests on single cylinder Petter AV1 diesel engine. Higher fuel economy and reduced CO, HC, CO2 and NOx emissions were observed with lower viscosity engine oils compared to higher viscosity engine oils.
2016-10-17
Technical Paper
2016-01-2354
Aaron J. Conde, Louis-Philippe Gagne, Martha Christenson, Brad Richard, Ian Whittal
Six vehicles were tested on a chassis dynamometer in order to characterize the differences in vehicle performance between vehicles equipped with various AWD powertrains and their 2WD counterparts. Three pairs of vehicle models from three separate vehicle manufacturers were chosen. The first two vehicle models are AWD vehicles that are equipped with a differential split that can deliver power the rear axle, when needed. The third vehicle employs an axle disconnect system which completely disconnects the rear axle, allowing the vehicles to operate in 2WD. 2WD vehicles were tested on a single-axle dynamometer and the AWD vehicles were tested on a double-axle dynamometer. Each vehicle was tested on four different drive cycles (FTP-75, HWFCT, US06, Cold FTP) as well as the SC03 drive cycle, when available. Vehicle emissions were measured for all cycles including CO, CO2, NOX, THC, and TPM.
2016-10-17
Technical Paper
2016-01-2217
Alex K. Gibson, John Corn, Jeremy Walker
This paper describes the bench testing procedures for a series-parallel, plug-in hybrid electric vehicle architecture to be integrated into a 2016 Chevrolet Camaro donated by General Motors to the Mississippi State University EcoCAR 3 Team. The process used to implement the hybrid electric vehicle architecture from the stock Camaro will be the primary focus of the research. Beginning with baseline testing, our team will develop a reference for the performance of the vehicle before the architecture has been implemented using the US06 and HWFET drive cycles. Furthermore, the implementation methods and safety considerations are going to be a large focus of integration as we validate the functional operating modes of the architecture. A charge depleting driving mode is tested for energy consumption using three different electric motor control strategies.
2016-09-27
Technical Paper
2016-01-8019
Marius-Dorin Surcel, Adime Kofi Bonsi
The main objective of this project was to compare the fuel consumption and dynamic performances of direct-drive and overdrive transmission tractors. Fuel consumption was evaluated at constant high speed and on various road profiles, while the dynamic performances were assessed on various road profiles only. The SAE Fuel Consumption Test Procedures Type II (J1321) was used for constant high speed fuel consumption track test evaluations. The tests were conducted with loaded two-axle van semi-trailers. The direct-drive transmission tractors consumed less than the overdrive transmission tractor, even though they were roughly 450 kg and 750 kg heavier, respectively.
2016-09-27
Journal Article
2016-01-8135
Robert Prohaska, Arnaud Konan, Kenneth Kelly, Michael Lammert
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 70,000 miles of in-use duty cycle data from class 8 drayage trucks operating out of the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz GPS location and SAE J1939 CAN information. Researchers processed the data through NREL’s Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. This drive cycle analysis led to the creation of multi-mode test drive cycles which can be used independently or collectively and are statistically representative of real world operation of port drayage vehicles.
2016-09-27
Technical Paper
2016-01-8113
Xiaohua Zeng, Guanghan Li, Dafeng Song, Sheng Li, Xianghua Li
This paper introduces the configuration and operation principle of the hydraulic hub-motor auxiliary system for heavy truck, which could achieve auxiliary driving and auxiliary braking function. In order to achieve coordinate distribution of the engine power between mechanical and hydraulic system, the hydraulic pump displacement controller is designed. A layered auxiliary drive control strategy is proposed to improve vehicle performance. Finally, the simulation model is built in the MATLAB/Simulink and AMESim platform and the co-simulation is conducted to verify the proposed control strategy. The results show that the strategy could realize effective control and the traction force increased proportion can be up to 15.6~17%, which would significantly improve the drivability and passing capacity of heavy truck.
2016-09-14
Technical Paper
2016-01-1906
Haijiang Liu, Wei Huang
Abstract The application of energy efficient technologies reduces the driving qualities of vehicles. Taking subjective evaluation methods to evaluate vehicle qualities is costly, poor reproducibility, seriously affecting the vehicle calibration cycle. In order to overcome the drawbacks of the subjective evaluation methods, this paper analyzes the characteristics of the content of drivability evaluation, and the subjective evaluation system is modified for an objective evaluation system. A Fuzzy Hierarchy quantization method is proposed based on AHP (Analysis Hierarchy Progress) and Fuzzy comprehensive method to quantify the content of drivability evaluation.
2016-09-14
Journal Article
2016-01-1881
Zhengshuai Fan, Hui Chen
Abstract The Automatic Parking System (APS) is consisted of environmental perception, path planning and path following. As one of the key technologies in APS, path following module controls the lateral movement of the vehicle during the parking process. A mature path following module should meet all the performance indexes of high precision, fast convergence, convenient tuning and good passenger comfort. However, the current path following control methods can only meet parts of the performance indexes, instead of all. In order to satisfy all the performance indexes above, a path following control method based on Linear Quadratic Regulator (LQR) is proposed in this paper. Firstly, the linearization of the non-linear vehicle kinematic model was done to establish a linear system of the path following error. Secondly, LQR optimal control was used to achieve the closed-loop control of this linear system to guarantee its stability and fast convergence property.
2016-06-14
Standard
J1860_201606
This SAE Recommended Practice applies to those air brake system valves used to control the vehicle service brakes and test procedures defined by SAE J1859 to measure performance characteristics. This Recommended Practice adheres to standard industry practice of using English units for specifying valve characteristics.
2016-05-17
Magazine
Base-engine value engineering for higher fuel efficiency and enhanced performance Continuous improvement in existing engines can be efficiently achieved with a value engineering approach. The integration of product development with value engineering ensures the achievement of specified targets in a systematic manner and within a defined timeframe. Integrated system engineering for valvetrain design and development of a high-speed diesel engine The lead time for engine development has reduced significantly with the advent of advanced simulation techniques. Cars poised to become 'a thing' Making automobiles part of the Internet of Things brings both risks and rewards. Agility training for cars Chassis component suppliers refine vehicle dynamics at the high end and entry level with four-wheel steering and adaptive damping.
2016-04-12
Event
This session deals with the analytical and experimental studies of vehicle electric drive vehicles or any non-conventional vehicle concepts that stretch the vehicle dynamics/mobility performance using intelligent technologies such as in-wheel motors, torque-vectoring controls, multi-wheel steer-by-wire, etc.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
Abstract At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and Multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in laboratory. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road.
2016-04-05
Technical Paper
2016-01-1676
Wenchao Liu, Guoying Chen, Changfu Zong, Chunshan Li
Abstract The driving range of the electric vehicle (EV) greatly restricts the development of EVs. The vehicles waste plenty of energy on account of automobiles frequently braking under the city cycle. The regenerative braking system can convert the braking kinetic energy into the electrical energy and then returns to the battery, so the energy regeneration could prolong theregenerative braking system. According to the characteristics of robustness in regenerative braking, both regenerative braking and friction braking based on fuzzy logic are assigned after the front-rear axle’s braking force is distributed to meet the requirement of braking security and high-efficient braking energy regeneration. Among the model, the vehicle model and the mechanical braking system is built by the CRUISE software. The paper applies the MATLAB/SIMULINK to establish a regenerative braking model, and then selects the UEDC city cycle for model co-simulation analysis.
2016-04-05
Technical Paper
2016-01-1675
Ricardo Prado, Paula Pedret, Christophe Moure, Ruben Morales-Menendez
Abstract Developments of new Electric and Hybrid propulsion systems demands chassis adaptations. The purpose of the XeV project was to develop and integrate a full suite of active chassis systems to deliver a fully electrified All-Wheel-Drive Pick-up truck. To achieve so, a new chassis frame, engine cradles and battery box were designed to bring direct drive from electric motor to wheel. On the other hand, for a four-wheelindependent-drive, a new rear suspension design was implemented, and a complex torque vectoring and traction control strategy was developed to provide optimum on and off road performance. All systems were tuned to meet the new drivetrain configuration, weight distribution and vehicle loading conditions making it possible to achieve comparable results with respect to the original combustion engine vehicle.
2016-04-05
Technical Paper
2016-01-1281
Jatin Agarwal, Monis Alam, Ashish Jaiswal, Ketan Yadav, Naveen Kumar
Abstract The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
2016-04-05
Technical Paper
2016-01-1173
Federico Bengolea, Stephen Samuel
Abstract In the continuous search for technology to improve the fuel economy and reduce greenhouse gas emission levels from the automotive vehicle, the automotive industry has been evaluating various technological options. Since the introduction of stringent legislative targets in Europe as well as in the United States of America in late 20th Century, one of the viable options identified by the industry was the application of alternative powertrain. On the motorsport arena, changes introduced by the Formula 1 governing body (FIA) for the high-performance racing engines also focuses on fuel economy. FIA regulation for 2014 restricts the fuel-flow rate to a maximum of 100kg/hr beyond 10,500 rev/min and prescribe fuel flow rate below 10,500 rev/min operating conditions for the F1 Engines. In addition, Formula1 and Le Mans racing regulations actively promote the integration of the hybrid powertrain in order to achieve optimum fuel economy.
2016-04-05
Technical Paper
2016-01-1105
Andrei Keller, Sergei Aliukov
Abstract This paper is devoted to development of methodology of system analysis of power distribution systems and development of methods of synthesis of objective laws in the power distribution among drive wheels of a multipurpose wheel vehicle. The methodology of system analysis provides for formulation of the problem; structural analysis of power distribution systems; the synthesis of objective laws in the power distribution; development of methods for their implementation. The methodology is based on the theory of the synthesis of technical systems. In this paper it has been solved the inverse problem of dynamics, namely: in accordance with specified requirements to effectiveness of the multipurpose wheeled vehicle, expressed in the form of formulated performance criteria, it is necessary to determine parameters of characteristics of control actions.
2016-04-05
Technical Paper
2016-01-1147
Xiaofeng Yin, Han Lu, Xiaojuan Zhao, Xiaohua Wu, Yongtong Zhang
Abstract To improve the comprehensive performance of vehicles equipped with stepped automatic transmission (SAT), the optimization of gearshift schedule should take into account various performance such as power performance, fuel economy, etc. In addition, the SATs would become more acceptable if the optimized gearshift schedule could also be individualized to reflect the driver’s expectation on vehicle performance to a reasonable extent. For the purpose of ensuring the comprehensive performance and improving the individual-ability (i.e., the ability to adapt to different driver’s performance expectation) of vehicles equipped with SAT, a linear weighted method has been proposed to construct a performance evaluation function, which applies different weights to represent driver’s expectation on performance by using these weights to multiply the normalized value of each sub-performance index.
2016-04-05
Technical Paper
2016-01-1238
Paul Karoshi, Karin Tieber, Christopher Kneissl, Georg Peneder, Harald Kraus, Martin Hofstetter, Jurgen Fabian, Martin Ackerl
Abstract In hybrid electric vehicles (HEV), the operation strategy strongly influences the available system power, as well as local exhaust emissions. Predictive operation strategies rely on knowledge of future traction-force demands. This predicted information can be used to balance the battery’s state of charge or the engine’s thermal system in their legal operation limits and can reduce peak loads. Assuming the air and rolling drag-coefficient to be constant, the desired vehicle velocity, vehicle-mass and longitudinal driving resistances determine the vehicle’s traction-force demand. In this paper, a novel methodology, combining a history-based prediction algorithm for estimating future traction-force demands with the parameter identification of road grade angle and vehicle mass, is proposed. It is solely based on a route-history database and internal vehicle data, available on its on-board communication and measuring systems.
2016-04-05
Technical Paper
2016-01-1143
Kevin A. Newman, Paul Dekraker
Abstract The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data. This paper presents an analysis of the effects of varying the absolute and relative gear ratios of a given transmission on carbon emissions and performance.
2016-04-05
Technical Paper
2016-01-1015
Somendra Pratap Singh, Shikhar Asthana, Naveen Kumar
Abstract Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
2016-04-05
Technical Paper
2016-01-0314
Larry Michaels, Curtis G. Adams, Michael Juskiewicz
Abstract A simulation approach is defined that integrates a military mission assessment tool (One Semi-Automated Forces) with a commercial automotive control/energy consumption development tool (Autonomie). The objective is to enable vehicle energy utilization and fuel consumption impact assessments relative to US Army mission effectiveness and commercial drive cycles. The approach to this integration will be described, along with its potential to meet its objectives.
2016-04-05
Technical Paper
2016-01-0429
Paul Augustine, Timothy Hunter, Nathan Sievers, Xiaoru Guo
Abstract The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
Viewing 1 to 30 of 3562

Filter

  • Range:
    to:
  • Year: