Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3532
2016-04-14 ...
  • April 14-15, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 18-19, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
2015-09-29
Technical Paper
2015-01-2859
Richard Wood
ABSTRACT
2015-09-29
Technical Paper
2015-01-2819
Vasu Kumar, Dhruv Gupta, Mohd Waqar Naseer Siddiquee, Aksh Nagpal
To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. On the other hand, the growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. The use of oxygenated fuels like alcohols showed tendency to decrease internal combustion engine emissions. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
2015-09-29
Technical Paper
2015-01-2799
Yang Wang, Shaopeng Tian, Lei Wu
Dynamic and economic performance play an important role in the vehicle evaluation indexes, and also are crucial parts considered during the design progress. This paper applies a method of parameters matching of the powertrain to one pure electric bus, with which a four-speed transmission dynamic system is designed. Meanwhile two powertrain models adopting motors with identical peak power but different base speeds and peak torques coupled with three-speed transmission or without transmission are introduced for comparison. The three models are based on identical type of bus. Then according to the powertrain parameters, simulation models of three bus models are established respectively. From the results of simulation, vehicle performances of the four-speed transmission powertrain, especially economic performance, are compared with the other two. At last, results show that the four-speed dynamic system is the most optimal dynamic system amongst three types.
2015-09-23
Event
This session will cover flight vehicle performance and sizing, conceptual/preliminary design, MDO, aero-propulsion integration, design education.
2015-09-15
Technical Paper
2015-01-2566
Reuben Chandrasekharan, Nick Iarocci, Sherry Vafa, Iyad Akel
The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tailplane. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
2015-09-15
Technical Paper
2015-01-2564
Benjamin Riggins, Davide Locatelli, Joseph Schetz, Rakesh Kapania, Thomas Poquet
Most traditional methods and equations for estimating weights and aerodynamics in the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process such as MDO simplicity of calculation is paramount, and for conventional configurations these approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations. In this work, physics-based methods for calculating the aerodynamic drag and wing weight of an aircraft were implemented in a commercial aircraft conceptual design and optimization tool, PACELAB APD, which in its default form utilizes traditional empirical methods for estimating these characteristics.
2015-09-15
Technical Paper
2015-01-2565
Nhan Nguyen, Sonia Lebofsky, Eric Ting, Upender Kaul, Daniel Chaparro, James Urnes
Air vehicles are typically designed to maintain sufficient structural rigidity for safe load-carrying capacity. Modern engineered materials such as composites have begun to appear in new airframe designs that can provide less structural rigidity while maintaining the same load-carrying capacity. An example of light-weight airframe design is the Boeing 787 Dreamliner aircraft, which has highly flexible wing structures than older-generation aircraft. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Modern aircraft such as the Boeing 787 have technologies to compensate for adverse aeroelastic interactions with flight performance and dynamics.
2015-09-06
Technical Paper
2015-24-2542
Carmelina Abagnale, Salvatore Strano, Massimo Cardone, Paolo Iodice, Mario Terzo, Giovanni Vorraro
The paper describes the development of an innovative test rig for the evaluation of e-bikes in terms of energetic performances, pollutant emissions and control system. The test rig has been realized starting from a commercial cyclist training system and operating on it substantial modifications. The test rig is able to reproduce an aforethought route or paths acquired during road tests. Through the installed sensors and data acquisition system, it is possible to measure the performance of the e-bike in terms of instantaneous power and speed. The experimental test rig can simulate the resistant torque of a predetermined track and allows to test and optimize the control strategy available on the electronic control unit (ECU). A fundamental feature of the system is constituted by the possibility of adopting a hardware in the loop approach for the testing of the e-bike and of its control.
2015-06-15
Technical Paper
2015-01-2353
Jan Bunthoff, Frank Gauterin, Christoph Boehm
Abstract In an automotive suspension, the shock absorber plays a significant role to enable the vehicle performances, especially in ride, handling and Noise-Vibration-Harshness (NVH). Understanding its physical characteristics is of great importance, as it has a main influence on the overall vehicle performance. Within this research project simulation models for different passive monotube shock absorber systems have been created in a 1-D system simulation software. The simulation models are designed and parameterized physically. To validate the simulation models measurements on different hydropulse-shaker with specially designed control signals to investigate the response during high frequency excitation, have been done. A detailed discussion of the several models and results of a simulation to measurement comparison is given. After detailed investigation the shock absorber simulation models are now adaptable to the multi body simulation.
2015-06-15
Journal Article
2015-01-2196
Farokh Kavarana, Scott Fritz, John DeYoung
Abstract Recent trends in vehicle light-weighting and tire design requirements have created an increased awareness to tire flat-spotting. Tire flat-spotting occurs when tires remain in a loaded condition without rolling for an extended period of time. Tire flat-spotting can either be temporary or permanent depending on the length of storage and other environmental factors. Tire non-uniformity caused due to flat-spots often induces shake and shimmy (back and forth oscillation of steering wheel) vibration in vehicles due to increased tire-wheel force variation input into the chassis. This can result in increased warranty costs for OEMs (Original Equipment Manufacturers) as well as customer dissatisfaction exhibited in third party quality surveys like the annual J. D. Power IQS (Initial Quality Survey).
2015-04-21
Event
Focusing on studies of driver behavior modeling, driving simulator techniques, vehicle ride comfort evaluation and enhancement, test/simulation correlation analysis, vehicle elastomeric component modeling, passive, semi-active and active suspension systems, suspension seat analysis and modeling techniques, the effect and control of beaming, shaking, impact harshness, brake judder and any other phenomena affecting ride comfort of driver, passengers, goods, etc
2015-04-21
Event
Focusing on studies of driver behavior modeling, driving simulator techniques, vehicle ride comfort evaluation and enhancement, test/simulation correlation analysis, vehicle elastomeric component modeling, passive, semi-active and active suspension systems, suspension seat analysis and modeling techniques, the effect and control of beaming, shaking, impact harshness, brake judder and any other phenomena affecting ride comfort of driver, passengers, goods, etc
2015-04-14
Collection
This technical paper collection focuses on analysis and enhancement of vehicle dynamics performance including handling/ braking/ traction characteristics as well as robustness and active stability under the influence of loading, tire forces and intelligent tire technology for enhancing overall vehicle system dynamics and safety characteristics and robustness. Load variations and other uncertainties, impact of system hybridization and electrification on vehicle dynamics and controls are discussed.
2015-04-14
Collection
Focusing on multibody system modeling and simulation results, rigid and flexible body modeling, mount loads predictions for vehicle body, frame/sub-frame, leaf-spring, exhaust system, driveline, and powertrain, the comparison of modeling techniques between vehicle dynamics simulation and durability loads simulation, optimal development process considering vehicle dynamics and durability loads, data processing and analysis techniques, loads sensitivity analyses for various model parameters, DOE and optimal design techniques for loads minimization, prediction of manufacturing tolerance effects on loads, robust design methods, driver modeling, and FE-based system modeling.
2015-04-14
Collection
This collection of technical papers focus on studies of driver behavior modeling, driving simulator techniques, vehicle ride comfort evaluation and enhancement, test/simulation correlation analysis, vehicle elastomeric component modeling (i.e. bushings, rubber mounts, springs, dampers, seat cushions), passive, semi-active and active suspension systems, suspension seat analysis and modeling techniques, the effect and control of beaming, shaking, impact harshness, brake judder and any other phenomena affecting ride comfort of driver, passengers, goods, etc.
2015-04-14
Technical Paper
2015-01-1522
Takahiro Yokoyama, Koji Hiratsuka, Shinya Notomi
Abstract Vehicle dynamic performance on snow-covered roads is one aspect of performance that is influenced by tire performance. Much research concerning a vehicle's performance on snow-covered roads has focused on being directed to vehicle control technology that increases control when the tire-slip ratio is larger, such as anti-lock braking systems (ABS) and electronic stability control (ESC). There has been little research, regarding performance when the slip ratio on a snow- covered road is smaller. We studied the friction performance of tires on snow-covered roads to predict vehicle performance within the grip range. We propose a technology for predicting vehicle performance within the small slipangle range and also verify its effectiveness. We established the tire characteristics that assure the grip range on a snow-covered road using performance indicators.
2015-04-14
Technical Paper
2015-01-0355
Matthew A. Jeffers, Larry Chaney, John P. Rugh
Abstract Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all-electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation.
2015-04-14
Technical Paper
2015-01-0407
Timothy W. Skszek, Matthew Zaluzec, Jeff Conklin, David Wagner
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance, occupant safety and utility of the baseline production vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine, resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the MMLV project approach, mass reduction and environmental impact.
2015-04-14
Technical Paper
2015-01-0428
Sida Li, Xiaowu Yang, Bruce Minaker, Xiaojin (Shine) Lan, Mark Villaire
Abstract An accurate bushing model is vital for vehicle dynamic simulation regarding fatigue life prediction. This paper introduces the Advanced Bushing Model (ABM) that was developed in MATLAB® environment, which gives high precision and fast simulation. The ABM is a time-domain model targeting for vehicle durability simulation. It dynamically captures bushing nonlinearities that occur on stiffness, damping and hysteresis, through a time-history-based fitting technique, compensated with frequency dependency functionality. Among the simulated and test-collected bushing loads, good correlations have been achieved for elastomer bushings and hydraulic engine mounts and validated with a random excitation signal. This ABM model has been integrated into a virtual shaker table (from a parallel project) as the engine mount model to simulate the mount load, and has shown acceptable prediction on fatigue damage.
2015-04-14
Technical Paper
2015-01-0909
Karthik Nithyanandan, Jiaxiang Zhang, Li Yuqiang, Han Wu, Chia-Fon Lee
Abstract Alcohols, especially n-butanol, have received a lot of attention as potential fuels and have shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. ABE, the intermediate product in the ABE fermentation process for producing bio-butanol, is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly.
2015-04-14
Technical Paper
2015-01-0611
Aref M. A. Soliman, Mina M.S. Kaldas
Abstract This paper presents experimental and theoretical investigations for ride comfort performance of compressed natural gas fuelled car. A compressed natural gas and gasoline fuel are used to run the engine car and its effect on the vehicle ride comfort is evaluated. The ride comfort performance in terms of experimental Root Mean Square (RMS) values of the vertical acceleration at near driver's feet on the floor, on the front and back seat for the same passenger car fuelled by gasoline and natural gas is evaluated. Furthermore, seven degrees of freedom vehicle mathematical model is developed, and validated through laboratory tests. The validation process is performed by comparing the predicted RMS values of the vertical accelerations with the measured RMS values. Furthermore, the optimum values of vehicle suspension parameters are obtained through the validated vehicle model.
2015-04-14
Technical Paper
2015-01-0588
Julian Mauricio Echeverry, Virgilio Vasquez, Jorge Aguirre, Diego Contreras
Abstract This document presents a methodology for obtaining the vehicle performance curves and values by means of the OBD2 port for a specific vehicle. In particular the Torque - Power engine curves and acceleration performance following SAE guidelines. Additionally we obtain the wheel dynamic rolling radius to get a more realistic performance. The results obtained are compared to a chassis dynamometer test performed on the same vehicle to prove feasibility for a low cost implementation when there is no access to said testing tools.
2015-04-14
Technical Paper
2015-01-0487
Lev Klyatis
Abstract This paper will discuss the problem with successful predicting of product performance (reliability, quality, durability, safety, recalls, profit, life cycle cost, and other interconnected technical and economic components of performance). The best component for analysing the performance situation during service life, including predicting, is recalls, because, first, recall accumulates the safety, reliability, durability, quality, profit, and total economic situation. And second, there is open official and objective information about the number of recalls from Government (National Highway Trafic Safety Administration and others), as well as companies-producers. Therefore, for analyzing the situation with the product performance, including predicting, this paper considers the situation with recalls.
2015-04-14
Technical Paper
2015-01-1215
George Dixon, Richard Stobart, Thomas Steffen
Abstract This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
2015-04-14
Technical Paper
2015-01-0873
Bin Mao, Mingfa Yao, Zunqing Zheng, Yongzhi Li, Haifeng Liu, Bowen Yan
Abstract An experimental study is carried out to compare the effects of high-pressure-loop, low-pressure-loop and dual-loop exhaust gas recirculation systems (HPL-EGR, LPL-EGR and DL-EGR) on the combustion characteristics, thermal efficiency and emissions of a diesel engine. The tests are conducted on a six-cylinder turbocharged heavy-duty diesel engine under various operating conditions. The low-pressure-loop portion (LPL-Portion) of DL-EGR is swept from 0% to 100% at several constant EGR rates, and the DL-EGR is optimized based on fuel efficiency. The results show that the LPL-EGR can attain the highest gross indicated thermal efficiency (ITEg) in the three EGR systems under all the tested conditions. At a middle load of 0.95 BMEP, 1660 r/min, the pumping losses of LPL-EGR lead to the lowest BTE among the EGR systems. The HPL-EGR can achieve the best brake thermal efficiency (BTE) and emissions within the EGR rate of 22.5% mainly due to the reduced pumping losses.
2015-04-14
Technical Paper
2015-01-0973
Aaron Brooker, Jeffrey Gonder, Lijuan Wang, Eric Wood, Sean Lopp, Laurie Ramroth
Abstract The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy's Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery life. The input data for most light-duty vehicles can be automatically imported. Those inputs can be modified to represent variations of the vehicle or powertrain. The vehicle and its components are then simulated through speed-versus-time drive cycles. At each time step, FASTSim accounts for drag, acceleration, ascent, rolling resistance, each powertrain component's efficiency and power limits, and regenerative braking.
2015-04-14
Technical Paper
2015-01-0978
Lori Lemazurier, Neeraj Shidore, Namdoo Kim, Ayman Moawad, Aymeric Rousseau, Phillip Bonkoski, Jeremy Delhom
Abstract Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
2015-04-14
Technical Paper
2015-01-1083
Robert L. Russell, Kent Johnson, Thomas Durbin, Patrick P. Chen, Jasna Tomic, Richard Parish
Abstract Emissions, fuel economy, and performance are determined over a light and a heavy driving cycle designed to represent the vehicles in-use driving patterns. The vehicles are 2010 class 8 Freightliner tractor trucks equipped with Cummins engines with Selective Catalytic Reduction and Diesel Particulate Filter emission control systems. The hybrid has lower carbon dioxide emissions, better fuel economy, and nitrogen oxide emissions statistically the same as the conventional. The CO emissions are well below the standards for both vehicles, but they are higher from the hybrid. The higher CO emissions for the hybrid are primarily related to the cooling of the Diesel Oxidation Catalyst (DOC) during the standard 20 minute key-off soak between repeats of the driving cycles. With a 1 minute key-off soak the CO emissions from the hybrid are negative.
2015-04-14
Technical Paper
2015-01-1190
Matthew Shirk, Jeffrey Wishart
Abstract As part of the U.S. Department of Energy's Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level two electric vehicle supply equipment, while two were exclusively DC fast charged with a 50 kilowatt fast charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals throughout on-road mile accumulation. Battery tests performed include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests.
Viewing 1 to 30 of 3532

Filter

  • Range:
    to:
  • Year: