Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3548
2016-10-24
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2016-04-14 ...
  • April 14-15, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 18-19, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
2016-04-12
Event
This session deals with the analytical and experimental studies of vehicle electric drive vehicles or any non-conventional vehicle concepts that stretch the vehicle dynamics/mobility performance using intelligent technologies such as in-wheel motors, torque-vectoring controls, multi-wheel steer-by-wire, etc.
2016-04-05
Technical Paper
2016-01-1676
Wenchao Liu, Guoying Chen, Changfu Zong, Chunshan Li
The driving range of the pure electric vehicles (PEVs) greatly restricts the development of PEVs. The vehicles waste a lot of energy on account of automobiles frequently braking under the city cycle.The regenerative braking system can convert the braking kinetic energy into the electrical energy and then returns to the battery, so the energy regeneration could prolong the driving range of the PEVs. To be for high-efficient braking energy recovery, regenerative braking force and friction braking force must be reasonably distributed, in the meantime, we must take the assignment of the front axle and rear axle’s braking force for the braking safety and stability of vehicles. This paper proposes a four-wheel-drive PEV model with an electric-hydraulic brake system, on the basis of which is an additional regenerative braking system.
2016-04-05
Technical Paper
2016-01-1678
Etsuo Katsuyama, Ayana Omae
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
2016-04-05
Technical Paper
2016-01-1677
Hiroshi Himeno, Etsuo Katsuyama, Takao Kobayashi
Electric vehicles (EVs) are attracting attention due to growing awareness of environmental issues such as fossil fuel depletion and global warming. In particular, a wide range of research has examined how direct yaw moment controls (DYCs) can enhance the handling performance of EVs equipped with multiple in-wheel motors (IWMs) or the like. Recently, this research has focused on reducing energy consumption through driving force distribution control. The first report proposed a method to minimize energy consumption through an efficient DYC for extending the cruising range of a vehicle installed with four IWMs, and described the vehicle behavior with this control. Since motors allow high design flexibility, EVs can be developed with a variety of drive systems. For this reason, various driving force distribution control methods can be considered based on the adopted system.
2016-04-05
Technical Paper
2016-01-1670
Qian Wang, Beshah Ayalew, Amandeep Singh
Multi-axle land vehicles with drive actuation on more than one axle offer improved stability and traction on various road surfaces. This is possible via the optimization of load distribution and maximization of the utilization of individual tire-road contacts by exploiting the redundancy of the drive system. This paper outlines a real-time hierarchical control optimization algorithm for multi-axle driven land vehicles with independent hub motor wheel drives and/or front axle active steering. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts that can closely track the desired state responses.
2016-04-05
Technical Paper
2016-01-1668
Hideki Fukudome
Measures to help preserve the environment have become an essential part of vehicle development. Vehicles powered by electric motors such as hybrid and fuel-cell vehicles are an effective way of helping to reduce greenhouse gas emissions. Furthermore, in addition to environmental friendliness, motor drive allows torque to be controlled freely with high response and precision, adopting both forward and reverse rotation. As a result, motors can be used to achieve enable a high degree of controllability even for functions related to ride comfort and handling performance. In addition, in-wheel motors (IWMs), i.e., motor units that are installed inside the wheels of the vehicle, greatly increase the freedom of part layout. Consequently, IWMs have the potential to revolutionize vehicle development, including the way that vehicles are manufactured, in a way not feasible with conventional vehicle configurations.
2016-04-05
Technical Paper
2016-01-1674
Takao Kobayashi, Etsuo Katsuyama, Hideki Sugiura, Eiichi Ono, Masaki Yamamoto
Various kinds of direct yaw moment controls have been developed to enhance vehicle handling performance. Simultaneously, there have been innovations of the driving force distribution mechanism. Recently, an in-wheel motor has been proposed as the most efficient system. However, since one of the difficult issues in developing electric vehicles is to improve the mileage per charge, it is necessary to construct a new control algorithm capable of conserving and saving energy. Therefore, the purpose of this paper is to study the cornering resistance and dissipation power on tire contact patch, and to develop an efficient direct yaw moment control during acceleration and deceleration while turning. To optimize the cornering efficiency reasonably, our method to formulate the cornering resistance in steady state cornering was extended to so-called quasi steady state cornering that includes acceleration and deceleration.
2016-04-05
Technical Paper
2016-01-1673
Long Chen, Shuwei Zhang, Mingyuan Bian, Yugong Luo, Keqiang Li
The in-wheel-motor (IWM) drive system has some interesting features, such as the vibration of this structure at low velocity. An explanation of this phenomenon is given in this paper by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. Firstly, a frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. Furthermore, an equation between the resonance velocity with the parameters of the drive system is obtained by combining the resonance frequency of this drive system with the fundamental frequency of the motor. The correctness of the equation is demonstrated through simulations and experimental tests on different road surfaces. The impact of different parameters on the vibration can be explained by this equation, which can give the engineer some instructions to design a control method to avoid this feature.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in lab. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road. This paper discusses about generation of drive files as inputs for poster actuation with virtual model(as a substitute for actual model)which is applicable in areas of vehicle durability and ride comfort studies.
2016-04-05
Technical Paper
2016-01-1147
Xiaofeng Yin, Han Lu, Xiaojuan Zhao, Xiaohua Wu, Yongtong Zhang
To improve the comprehensive performance of vehicles equipped with stepped automatic transmission (SAT), the optimization of gearshift schedule should take into account various performance such as power performance, fuel economy, etc. In addition, the SATs would become more acceptable if the optimized gearshift schedule could also be individualized to reflect the driver’s expectation on vehicle performance to a reasonable extent. For the purpose of ensuring the comprehensive performance and improving the individual-ability of vehicles equipped with SAT, a linear weighted method has been proposed to construct the a performance evaluation function, which applies different weights to represent driver’s expectation on performance by using these weights to multiply the normalized value of each sub-performance index.
2016-04-05
Technical Paper
2016-01-0429
Paul Augustine, Timothy Hunter, Nathan Sievers, Xiaoru Guo
The performance of a structural design depends upon the assumptions made on input load. In order to estimate the input load, during the design stage of the suspension assembly of a BAJA car, designers invest immense amount of time and effort to formulate the mathematical model of the design. The theoretical formulations may include idealization errors which can affect the performance of the car as a final product. These errors in estimating design load will lead to more weight or less strength than needed. This discrepancy between the assumed input load and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to understand the real world loading of structures. A limitation of load cells is that the structure needs to be modified to accept the load cell and not all desired loading can be measured.
2016-04-05
Technical Paper
2016-01-1675
Ricardo Prado, Paula Pedret, Christophe Moure, Ruben Morales-Menendez
“Developments of new Electric and Hybrid propulsion systems will demand adaptations to the chassis. The remit of the XeV project was to develop and integrate a full suite of active chassis systems to deliver a fully electrified All-Wheel-Drive pick-up truck. In doing this, a new chassis frame, engine cradles and battery box were designed to bring direct drive from electric motor to wheel. Four wheel independent drive was obtained through the design a new rear suspension, and a complex torque vectoring and traction control software was developed to provide optimum on and off road performance. All systems were tuned to meet the new drivetrain configuration, weight distribution and vehicle loading conditions.”
2016-04-05
Technical Paper
2016-01-1105
Andrei Keller, Sergei Viktorovich Alyukov
This paper is devoted to development of methodology of system analysis of power distribution systems and development of methods of synthesis of objective laws in the power distribution among drive wheels of a multipurpose wheel vehicle. The methodology of system analysis provides for formulation of the problem; structural analysis of power distribution systems; the synthesis of objective laws in the power distribution; development of methods for their implementation. The methodology is based on the theory of the synthesis of technical systems. In this paper it has been solved the inverse problem of dynamics, namely: in accordance with specified requirements to effectiveness of the multipurpose wheeled vehicle, expressed in the form of formulated performance criteria, it is necessary to determine parameters of characteristics of control actions.
2016-04-05
Technical Paper
2016-01-0314
Larry Michaels, Curtis G. Adams, Michael Juskiewicz
A simulation approach is defined that integrates a military mission assessment tool (OneSAF) to a commercial automotive control/energy consumption development tool (Autonomie). The objective is to enable vehicle energy utilization and fuel consumption impact assessments relative to US Army mission effectiveness and commercial drive cycles. The approach to this integration will be described along with its potential to meet its objectives.
2016-04-05
Journal Article
2016-01-1569
Kiho Yum
In this research, the influence of tire force and moment (F&M) characteristics on vehicle on-center steering performance was analyzed and then how to improve vehicle on-center performance was studied through controlling tire structure design parameter and tire tread grip characteristics. First, the relationship between vehicle on-center steering performance and tire F&M characteristics was identified by comparing vehicle steering measurement and tire F&M measurement. It was found that on-center steering performance is improved as the aligning torque at slip angle 1° increases. Secondly the influence of tire structure design parameter on tire aligning torque was studied by tire F&M finite element analysis. It was also found aligning torque increases as tire tread and sidewall stiffness decreases. However it shows trade-off characteristics with tire cornering force stiffness so it is necessary to optimize cornering force stiffness and aligning torque stiffness.
2016-02-04
Standard
J2807_201602
This document establishes minimum performance criteria at GCWR and calculation methodology to determine tow-vehicle TWR for passenger cars, multipurpose passenger vehicles and trucks. This includes all vehicles up to 14000 lb GVWR.
2016-02-03
Magazine
Baking in protection With vehicles joining the Internet of Things, connectivity is making cybersecurity a must-have obligation for automotive engineers, from initial designs through end-of-life. New Engines 2016 Highlighting the design, engineering, and technologies inside some of the most competitive new gasoline and light-duty diesel ICEs. Citizen of the world Cuneyt L. Oge begins his term as 2016 SAE International President with a vision about auto-mobility and aero-mobility 2050. CES rollouts extend connectivity, app integration Ford looks to spread Corning's new lightweight Gorilla Glass beyond the 2017 GT New 40%-scale wind tunnel increases GM's aero-development capacity Surface Generation speeds composites throughput with one-shot stamp-forming process 2017 Cadillac XT5 debuts GM's new lightweight crossover architecture Porsche and Bentley plan electric future
2015-11-03
Magazine
Active in aero Several automakers-notably Mercedes-Benz and Audi - used the Frankfurt Motor Show stage to reveal sleek vehicles that aggressively employ active aerodynamic elements and other advances to reduce drag. Composites permeate inside and out Composite materials are gaining popularity for both unseen structural components and for exterior eye candy. Powertrain testing: coping with complexity With increasing use of electrical components to extend the performance of conventional combustion engines, powertrain development has never been more complicated. The good news is that test and development engineers are harnessing advanced simulation techniques and computer processing to develop the most efficient and fun powertrains ever. Can ads help in vehicle-to-vehicle rollout? Porsche unveils new downsized, boosted 3.0-L boxer six. Johnson Controls, Faurecia envision interiors for autonomous driving. Jaguar enters performance crossover SUV segment.
2015-10-21
Standard
J2188_201510
This SAE Recommended Practice takes into account modern standardized methods for collecting and summarizing data that has an effect on vehicle steady-state performance, such as engine output (gross and net), transmission losses, drivetrain efficiency, vehicle aerodynamic devices for various vehicle and body configurations, as well as road surface variations and air density variations resulting from altitude and barometric effects. The procedure does not address vehicle transient performance (acceleration, braking, and cornering), because of the considerable amount of additional data required such as moment of inertia of all the rotating parts. Nor does it address vehicles with torque converters and automatic transmissions. This document is, therefore, intended for vehicles having fixed-ratio type transmissions and positive engagement clutches. Metric and ISO unit conversions are provided in the metric conversion tables at the end of this procedure (see Appendix B).
2015-10-20
WIP Standard
AIR4548B
This SAE Aerospace Information Report (AI) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
2015-10-07
Magazine
Tearing down the global barriers Steering systems are becoming increasingly sophisticated, as Ian Adcock discovers when talking to the men leading Nexteer's European expansion €1.1 billion worth of Bentley luxury Bentley's Bentayga is the first in a new generation of luxury cross-overs. Ian Adcock reveals its engineering secrets Goal: "virtual" perfection Should simulations be 100% accurate?
2015-10-06
Magazine
2016 Malibu sheds 300 lb, adds new hybrid system More wheelbase, style, fuel economy, and comfort aim to move GM's volume midsize sedan from the sidelines to the fast lane. Lighter, more powerful 2016 Honda Pilot The third-generation SUV gets a sleek new look and plenty of slick technology for enhanced performance and safety. 2016 Mazda MX-5 stays true to its roots Mazda engineers give the industry a lesson in getting more from less. 2016 Land Rover Discovery Sport spearheads more efficient Land Rovers JLR's space-efficient, flexible SUV moves to JLR's new Ingenium modular engines. Audi chooses high technology, cautious design evolution for new A4 In addition to lighter weight and significant improvements in efficiency, the new car employs plenty of technology and driver support.
2015-09-29
Technical Paper
2015-01-2819
Vasu Kumar, Dhruv Gupta, Mohd Waqar Naseer Siddiquee, Aksh Nagpal, Naveen Kumar
Abstract The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
2015-09-29
Technical Paper
2015-01-2739
Sean Lopp, Eric Wood, Adam Duran
Abstract Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no road grade requirements. Additionally, the existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations.
2015-09-29
Technical Paper
2015-01-2799
Shaopeng Tian, Yang Wang, Lei Wu
Abstract Dynamic and economic performance play an important role in the vehicle evaluation indexes, and also are crucial parts considered during the design progress. This paper applies a method of parameters matching of powertrain to one Pure Electric City Bus(PECB), with which a four-speed transmission dynamic system is designed. Meanwhile two powertrain models adopting motors with identical peak power but different base speeds and peak torques coupled with two-speed transmission or without transmission are introduced for comparison to analyze if a smaller motor performs better in performance. The three models are based on identical type of bus. Then according to the powertrain parameters, simulation models of three bus models are established respectively. From the results of simulation, vehicle performances of the four-speed transmission powertrain, especially economic performance, are compared with the other two.
2015-09-29
Journal Article
2015-01-2859
Richard Wood
The impact of Reynolds number on the aerodynamics and operational performance of commercial vehicles is discussed. All supporting data has been obtained from published experimental and computational studies for complete vehicles and vehicle components. A review of Reynolds number effects on boundary layer state, unsteady and steady flow, time dependent wake structure, interacting shear layer and separated flows is presented. Reynolds number modeling and simulation criteria that impact aerodynamic characteristics and performance of a commercial vehicle are shown. The concepts of dimensional analysis and flow similarity are employed to show that aerodynamics of commercial ground vehicles is only dependent on Reynolds number. The terminology of Roshko is adopted for discussing the variation in drag with Reynolds number in which the subcritical, transitional and transcritical flow regimes are defined for commercial vehicles.
2015-09-23
Event
This session will cover flight vehicle performance and sizing, conceptual/preliminary design, MDO, aero-propulsion integration, design education.
2015-09-15
Technical Paper
2015-01-2566
Reuben Chandrasekharan, Nick Iarocci, Sherry Vafa, Iyad Akel
Abstract The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tail. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
Viewing 1 to 30 of 3548

Filter

  • Range:
    to:
  • Year: