Charging – what can be more simple?

SAE J1772™
Charging – What Can Be More Simple?

We charge our electronic devices everyday

- Laptops
- Cell phones
- PDAs
- Bluetooth devices
- Power tools
- MP3 players
- Toys
- Other...
Why the Confusion?

• Many factors determine a device’s battery size, capacity and recharge time
 – Power requirement
 – Duty cycle
 – Physical size
 – Target cost
• Each manufacturer is allowed to optimize a device’s battery strategy
• Results in abundance of solutions!
PEV Charging – A Different Road

• Minimize charging equipment based on use cases
 – Residential slow charge rate – portable cord sets
 – Residential and public intermediate charge rate – fixed charge equipment
 – Public fast charge rate – fixed charge equipment

• Commonize the user charging experience
 – Gasoline pump analogy – Each pump may have multiple grades of gasoline available but fueling is the same
 – Reduces customer apprehension and speeds acceptance of the technology

• 120V Portable Vehicle Charge Cord
Terminology

• AC Level 1 Charging*
 – 120V AC charging from standard 15 or 20 amp NEMA outlet, on-board vehicle charger (~1.9kw)

• AC Level 2 Charging*
 – 208–240 AC charging up to 80 amps, on-board vehicle charger (~19kw)

• DC Charging (Fast Charging)**
 – Off-board charger connects directly to vehicle high voltage battery bus
 – Charger controlled by vehicle which allows for extremely high power transfer (>100kw) and thus faster recharge times (minutes instead of hours)
 – Actual charge rate limited by battery chemistry, infrastructure and other factors

* Same charge coupler used for AC Level 1 and 2 charging** Requires unique charge coupler other than the AC Level 1 and 2 coupler. Currently under development.
Terminology

• Electric Vehicle Supply Equipment (EVSE)
 – General term used for any off-board equipment used to supply charge energy to the vehicle. EVSE includes:
 – Vehicle Charge Cord
 – Charge Stands (public or residential)
 – Attachment Plugs
 – Power Outlets
 – Vehicle Connector
 – Miscellaneous Infrastructure
Components of PEV Charging System – Vehicle Inlet/Plug

- 2 power contacts – up to 80 amps, 240V AC, 19.2kw
- 1 ground contact
- Control Pilot signal
 - Verification of vehicle connection
 - Supply equipment ready to supply energy
 - PEV ready to accept energy
 - Ventilation requirements
 - Supply equipment current capacity
 - Equipment ground present
- Proximity detection
 - Indicates to vehicle that plug is present to prevent drive away
- Latch feature
Components of PEV Charging System – Electric Vehicle Supply Equipment (EVSE)

- Can be a cord set or fixed mounted
- Includes enclosure and method of attachment to AC mains (plug or direct connect)
- Generates Control Pilot signal
- Protects from ground faults
- Switches power to vehicle based on vehicle command
- Displays presence of AC input power
Components of PEV Charging System – On-Board Charging System

• Control system
 – Interprets Control Pilot and proximity signal information
 – Charge algorithm

• On-board charger
 – Converts AC mains power to DC high voltage to charge PEV battery
 – Converts AC mains power to DC low voltage to power vehicle system during charge

• Thermal system
 – Condition PEV battery
 – Cool charger

• Charge status indicator
PEV Charging – How It Works

• Charge plug not powered until plugged into and commanded by vehicle
• Supply equipment signals presence of AC input power
• Vehicle detects plug via proximity circuit (prevents drive away while connected)
PEV Charging – How It Works

• Control Pilot functions begin
 – Supply equipment detects PEV
 – Supply equipment indicates to PEV readiness to supply energy
 – PEV ventilation requirements are determined
 – Supply equipment current capacity provided to PEV
 – PEV commands energy flow
 – PEV and supply equipment continuously monitor continuity of safety ground

• Charge continues as determined by PEV

• Charge may be interrupted by disconnecting the plug from the vehicle
PEV Charging – Safety & Durability

• Receptacle and cord plug
 – Specified to comply with international standards including:
 • J1772™
 • IEC 62196
 • UL 2251
 • Electrical safety
 – 10,000 cycle life with exposure to dust, salt and water
 – Vehicle drive over does not expose a hazard
 – Sealing
 – Corrosion resistance
 – Touch temperature limits
PEV Charging – Safety & Durability

• Supply equipment
 – Specified to comply with international standards including:
 – J1772™
 – IEC 61851
 – National Electric Code, Article 625
 – UL 2202, 2231
 – Electrical safety (shock protection)
 – Enclosure durability
 – Charge cable durability
Summary

• Common interface standard
 – No Beta vs. VHS confusion or apprehension
 – Reduces overall cost to consumer

• Major components of charging system
 – Supply equipment
 – Portable vehicle charge cord
 – Fixed charge stations
 – Public charge stations
 – Common interface plug and receptacle
 – On-board charging system
 – Charger
 – Battery
 – Charging controls
Summary

- Durability and safety
 - Designed for 10,000 charge cycles
 - Able to withstand vehicle drive-over
 - Durable cabling
 - Multiple layers of safety
 - Ground Fault Circuit Interrupter
 - Safety ground verification
 - Finger-proof
 - Sealed
 - Vehicle control of charge power
 - UL listed