MAINTENANCE INNOVATION CHALLENGE

DECEMBER 12–15, 2022
ORLANDO, FLORIDA
MEMORANDUM FOR 2022 DOD MAINTENANCE SYMPOSIUM PARTICIPANTS

After a one-year hiatus due to the COVID-19 pandemic, I am pleased to announce the return of the highly anticipated Maintenance Innovation Challenge (MIC) as part of the 2022 Department of Defense (DoD) Maintenance Symposium. Aligning with the National Defense Strategy priority of building an enduring advantage and the Deputy Secretary of Defense’s focus on reducing sustainment costs by improving performance across key sustainment cost drivers, the MIC provides an outstanding opportunity to highlight and exploit promising innovations and technology.

In keeping with the theme of the 2022 DoD Maintenance Symposium, “Next Generation Materiel Readiness Forged through Data Advantage, Technology, and Innovation,” the MIC aims to elevate and expand the call for maintenance innovation beyond novel technology; to include unique partnerships, resourcing strategies, and business practices or processes.

With assistance from the DoD Joint Technology Exchange Group, the submittals were thoroughly reviewed, and six finalists selected. Senior maintenance and sustainment leaders including the Military Services’ Sustainment Technology Executives and the organic industrial base commanders selected this year’s MIC winner.

The MIC finalists will be presenting their maintenance innovations during the Maintenance Innovation Challenge breakout on December 12, 2022, from 1300-1430 in the Orange County Convention Center, Orlando, Florida. Based on the presentations, the audience will select the MIC “People’s Choice Award” winner. The MIC winner and the People’s Choice Award winner will be announced and formally recognized during the DoD Maintenance Symposium’s plenary session on the morning of December 13, 2022. I encourage your participation in this breakout session to engage with some of the most forward-thinking individuals in our community and to continue the dialogue throughout the DoD Maintenance Symposium and the exhibition hall.

Please join me in congratulating this year’s MIC finalists, both winners, and all those who contributed their efforts to share the innovative ideas highlighted in this Maintenance Innovation Challenge publication. Well done!

Sincerely,

Vic S. Ramdass, Ph.D
Deputy Assistant Secretary of Defense
(Materiel Readiness)
JOINT TECHNOLOGY EXCHANGE GROUP (JTEG) 6
FINALISTS .. 12
COLD SPRAY POP UP PRODUCTION CELL
Jeff Campbell .. 12
E-DRILL: A NEW WAY TO REMOVE AIRCRAFT FASTENERS
Jared Wright ... 13
FIBER OPTIC FUSION SPLICE REPAIR
Brett Jordan .. 14
LETTERKENNY ARMY DEPOT (LEAD) INNOVATIVE COLD SPRAY REPAIRS
Sam Evans ... 15
METAL COMPONENTS FROM HYBRID ADDITIVE MANUFACTURING
Slade Gardner .. 16
WITNESS INTEGRITY SENSOR PLATFORM (WISP)
Seth S. Kessler, Ph.D. .. 17

ADDITIVE MANUFACTURING 18
ADDITIVE MANUFACTURING PROCESS FLOW
David Coates .. 18
MELD METAL 3D PRINTED PARTS
Wes Downs .. 19
TRACEABILITY & SERIALIZATION FOR ADDITIVE MANUFACTURERS
Tom Hargett .. 20
SOFTWARE DEVELOPMENT
James Hass ... 21
BUILD, REPAIR & ENHANCE METAL COMPONENTS ON-DEMAND
Melanie A Lang ... 22
RAPID COMPLEX METAL PARTS USING ADDITIVE AND CASTING MANUFACTURING
Simon Miller ... 23
ADDITIVE MANUFACTURING AND REPAIR OF ARMAMENT PARTS
Howard Sizek ... 24
DISTRIBUTED QUALIFICATION FOR ADDITIVE MANUFACTURED PARTS
Mike Vasquez .. 25
ADVANCED MANUFACTURING DIGITAL HUB
Sean Wade ... 26

AUTONOMIC LOGISTICS 27
UHP SHAFT WATER BLASTER ROBOTIC SHROUD
Robert Bell ... 27
SARCOS SAPIEN 6M ROBOTIC ARM
Tommy Brown .. 28
CMD-IESR (COMMAND MAINTENANCE DASHBOARDS) – INTERACTIVE EQUIPMENT STATUS REPORTING
Brett Eklund and Daniel Cook 29
A.D.A.M.M. – THE NEXT REVOLUTION IN MAINTENANCE INFORMATION SYSTEMS
Daniel Fournier .. 30
CLOSED LOOP MOBILE APPLICATIONS (CLMA)
Jason Hackerson ... 31
SMALL TOOL INVENTORY & LOCATION TRACKING SYSTEM (STILTS)
Greg Hutson ... 32
LEVEL 5 AUTOMATED TOOL CONTROL (ATC)
Andrew Lobo ... 33
TOBYHANNA ARMY DEPOT COMMUNICATIONS SECURITY FORWARD REPAIR ACTIVITY VAN
James Riley ... 34
DIGITAL TWINS FROM PAPER
Alex Shaw ... 35
INTEGRATING 3D VIZ AND SMART FACTORY CAPABILITIES TO OPTIMIZE REFITS
Vincent Stamper .. 36

BUSINESS PROCESSES AND PARTNERSHIP 37
NEXT GENERATION DEPOT MODERNIZATION
Abigail Denburg ... 37
STARLINK-POWERED 5TH-GEN AIRCRAFT
Cassandra Herman .. 38
DIGITAL TWIN FOR MRO OPTIMIZATION
Greg Hutson ... 39
AURORA INTELLIGENT SCHEDULING FOR INCREASED MAINTENANCE THROUGHPUT
Robert Richards, Ph.D. ... 40
NAVY REPAIR TECHNOLOGY EXERCISE (REPTX) 2022
Susan Simms ... 41
NOVEL SUPPLY CHAIN PROCESS FOR MEDICAL DEVICE REPAIR PARTS
Chris Yerger ... 42

COATING AND CORROSION PREVENTION 52
PAINT OPERATIONS OPTIMIZATION
Huntley Bodden ... 52
AERIAL ROBOTIC SPOT REPAIR SYSTEM FOR SURFACE PREPARATION, COATING & INSPECTION
Robert Dahlstrom ... 53
HYBRID BUILDING SYSTEM
Donald Deptowicz ... 54
SURFACE TREATMENT SYSTEM
Donald Deptowicz ... 55
CRACKED-ARMOR LAMINATED PATCH REPAIR (CALPAR)
Shiv Joshi .. 56
APPLYING NANOCOMPOSITES TO ENHANCE FLEET FLIGHT CAPABILITIES
Brian Lindgren .. 57
NON-EXPLOSIVE LITHIUM REPLACEMENT BATTERIES
Brian Lindgren ... 58

COCOON IMPROVED THERMAL ACOUSTIC BLANKET (ITAB)
Peter Lord .. 59

DESCALERS WITH ZERO CORROSION THAT ALSO PASSIVATE
Ben Ohlmeyer .. 60

AUTOMATED ULTRASONIC BEARING CLEANING LINE
Mike Pochkowski ... 61

FULLY AUTOMATED THERMAL SPRAY PROCESS
Mike Pochkowski ... 62

FULLY AUTOMATED GREEN PARTS CLEANING AND SURFACE TREATMENT PROCESS
Mike Pochkowski ... 63

THE FULLY AUTOMATED 14 AXES SHOT-PEENING SYSTEM
Mike Pochkowski ... 64

FULLY AUTOMATED IBR & BLISK REPAIR PROCESS
Mike Pochkowski ... 65

CORROSION HAS FOUND ITS KRYPTONITE
Daniel Reid .. 66

AUTONOMOUSLY TRIGGERED LUBRICATION & SELF-REPAIR
Jon Schupp .. 67

COLLABORATION TO ENHANCE LASER SURFACE PREPARATION
SUSAN L SPRENTALL... 68

ENERGY, ENVIRONMENTAL, HEALTH AND SAFETY 69
SPARTABRAKE METAL SURFACE CLEANER
Clayton Balmes .. 69

HYDROGEN FUEL GENERATOR—MORE POWER-LESS FUEL
Jerry A Brown .. 70

MOBILE WATER PRODUCTION
Jerry A Brown .. 71

THE BLASTBAG COMPANY
Patrick Christian .. 72

HUMAN AUGMENTATION FOR MAINTENANCE PROCESSES
Zachary Coulson .. 73

ROBOTIC CRACK SEALER FOR SUPERIOR PAVEMENT MAINTENANCE
Zac Graber .. 74

TECHNOLOGY, SYSTEMS, PROCESSES FOR EXTRACTING AIRCRAFT STRATEGIC METALS FOR REUSE
Patrick Harris ... 75

PROVIDE DOD ENVIRONMENTALLY FRIENDLY INDUSTRIAL CHEMICALS
Edwin Kincaid ... 76

MOBILE WATER PRODUCTION
Jerry A Brown .. 71

SAFE SOLVENT INTEGRATION
Ben Ohlmeyer .. 79

ENHANCED INSPECTION......... 80
AUTOMATED VEHICLE BATTERY MANAGEMENT REPORTING SYSTEM
Huntley Bodden .. 80

ENHANCED INSPECTIONS LEAD TO HIGHER QUALITY
Tom Hargett ... 81

PASS: PART AUTOMATED SCANNING SYSTEM FOR SMALL PART DIGITAL TWINS
Michael Raphael .. 82

JOINT AUTONOMOUS REPAIR VERIFICATION AND INSPECTION SYSTEM (JARVIS II)
Waruna Seneviratne .. 83

MIXED REALITY (MR) FOR VISUAL INSPECTIONS OF COMPOSITE STRUCTURES
Konstantyn Shyshkin .. 84

AN FMCW RADAR BASED CABLE REMAINING USEFUL LIFE ESTIMATOR
Zhonghai Wang ... 85

DEFECT CHARACTERIZATION OF NAVY SHIP STRUCTURES WITH BROAD SPECTRUM ACTIVE ULTRASONIC MODE IMAGING
Dr. Steve Ziola ... 86
RELIABILITY IMPROVEMENT
(HARDWARE) 87

PROJECT GUSTAV | 3X
COMMUNICATION CAPABILITY
Ryan Amador and Matthew Connelly 87

RAPID BONDED NUTPLATE REPLACEMENT
Brett Bolan ... 88

NON-DESTRUCTIVE ORGANIC REVERSE
ENGINEERING OF PRINTED CIRCUIT
BOARDS
USING COMPUTED
TOMOGRAPHY TECHNOLOGY
Damon L. Brown, P.E. .. 89

PORTABLE SCARFING COMPOSITE
STRUCTURE REPAIR SYSTEM
Jeswin Chankaramangalam 90

REACTIONLESS ENGINES WITH
MACROSCOPIC THRUST
Ed Chen .. 91

FRICITION REDUCING OIL ADDITIVE
INCREASES ENGINE EFFICIENCY
AND LONGEVITY
Greg Christensen .. 92

SMART SUSCPECTOR COMPOSITE REPAIR
SYSTEM
Bill Dykstra .. 93

ADVANCED SPHERE BRAKES FOR
GROUND VEHICLES
Aaron Lewis .. 94

FLIGHTLINE TEST INNOVATION YIELDS
SIGNIFICANT SAVINGS AND
SUPPORTS AGILE
COMBAT EMPLOYMENT (ACE)
Jon Semancik .. 95

EDLORE SMART & INTERACTIVE
EQUIPMENT MANUALS
Javid Vahid ... 96

TRAINING/MISC 97

TRANSFORMING VEHICLE REPAIR AND MAINTENANCE
Stephanie Blake .. 97

AUGMENTED, VIRTUAL, AND MIXED REALITY
(AR/VR/MR) FOR CRASH & SALVAGE
TRAINING
Jean-Pierre Bolat, CDR, USN (Ret) 98

MILITARY POSITIVE REPAIR INFORMATION TEXT
ANALYZER (MIL-PRITA)
Abigail Denburg .. 99

BOSTON ENGINEERING MIXED REALITY
EXPERT GUIDANCE
Brian Kononchik .. 100

VIRTUAL REALITY PAINT TRAINING SIMULATOR
Leighton Todd Lavender 101

ACTION TRAINER ARTIFICIAL INTELLIGENCE
Ary Nussbaum .. 102

LEAN MAINTENANCE THROUGH PROCESS AUTOMATION
Channing Wright .. 103
The importance of sustainment innovation development and adoption is increasingly relevant as DoD strives to accelerate materiel availability by improving the effectiveness and viability of the Defense industrial base, including our organic capabilities. The COVID-19 pandemic has again illuminated the gaps we have in our domestic resources, industrial capabilities, and supply chain approaches and has highlighted the innovative spirit and world-class capabilities resident in our sustainment community during our response. Novel innovations can provide significant advances in capabilities to our sustainment enterprise and benefit other military and domestic challenges. The Military Services, Defense agencies, industry, and academia, are all actively pursuing innovative technologies and processes to improve maintenance capability, effectiveness, and efficiency.

The objective of the Maintenance Innovation Challenge (MIC) is to elicit and share unique, enhanced maintenance capabilities, to potentially elevate and expand sustainment innovation beyond new technology, to include value-added partnerships, resourcing strategies, business practices, processes, and other transformative capabilities.

MIC submissions are reviewed and evaluated by the Joint Technology Exchange Group (JTEG) Principals, composed of DoD logisticians representing each Military Service, the Joint Chiefs of Staff, the Defense Logistics Agency (DLA), and an industry representative. The JTEG selected six finalists from the group of 92 submissions. In the second phase, the six finalists were evaluated by senior DOD logisticians who ultimately selected an overall winner.
The Evaluation Criteria used to judge the submissions are:

- Maintenance Centric—Innovation’s impact on maintenance
- Original Contribution for the State of the Art—Originality of the idea
- Commercialism—Focus on the innovation rather than the company/organization
- Technical Maturity—How ready to implement is the technology/process?
- Cross-Service Application—How many military Services and/or agencies is this applicable to?
- Potential to Benefit Maintenance—Potential to improve the effectiveness and/or efficiency of maintenance
- Feasibility and Practical—Assessment of how viable the innovation is to transition to DoD maintenance

At the 2022 DoD Maintenance Symposium, the six MIC finalists, will present their new technologies, processes, or business practices to the symposium audience during a breakout session. Attendees at this breakout session will have the opportunity to select the MIC People’s Choice Award based on the six presentations. Additionally, all who submit a qualifying abstract and quad-chart are published in this MIC book.

The MIC winner as selected by a panel of senior DoD logisticians, and the “People’s Choice Winner” will both be announced and receive high profile DoD-wide recognition during a DoD Maintenance Symposium plenary session where they will receive striking trophies. Additionally, the National Center for Manufacturing Sciences has offered to provide each winner $50,000 of in-kind support.

This MIC book contains the abstracts, quad charts, and contact information for all 92 innovations submitted, and is a great tool to utilize for information exchange as well as keep as a reference source.
The purpose of the Joint Technology Exchange Group (JTEG) is to improve coordination in the introduction of new or improved technology, new processes, or new equipment into Department of Defense depot maintenance activities. The JTEG will seek ways to better leverage technology improvements in depot maintenance through collaboration to support the higher DoD goals of improving effectiveness and efficiency.

JTEG Mission:
- Provide a forum for the exchange of information on new technology, processes, and equipment developments within the DoD maintenance community
- Collect, analyze, and disseminate DoD maintenance requirements for new technology, processes, and equipment.
- Serve as an advocate for new technology or equipment with cross-service potential to increase efficiency

JTEG Community:
The JTEG community includes anyone in DoD, industry, or academia interested in exchanging information associated with DoD maintenance. The JTEG is overseen by a panel of representatives, or Principals, from each of the military services, the Defense Logistics Agency, the Joint Chiefs of Staff, the Office of the Deputy Assistant Secretary of Defense for Materiel Readiness – (ODASD-MR), and an industry representative.

JTEG Monthly Technology Forums:
The JTEG conducts virtual monthly technology forums that provide opportunities for the DoD maintenance community to exchange information and share ideas. The forums feature a different maintenance topic each month and are open to the public. The topics generally fall into one of three areas:

1. Technology focus areas which feature a specific maintenance capability such as digital maintenance, additive manufacturing and repair, or advanced wiring inspection capabilities.
2. Maintenance and sustainment processes such as better ways to adopt new capabilities, workforce development, or safety.
3. Organizational perspectives which describe maintenance capabilities and initiatives at specific DoD maintenance activities such as maintenance depots or research centers.

JTEG Website:
Industry, DoD, and academic personnel can use the JTEG website, https://jteg.ncms.org, to view and share information on new technology, processes, and equipment developments that have proven benefits or potential applications involving depot maintenance. Visitors are welcome to review new and exciting technology posted on the website or reach out and contact the JTEG Principals listed on the website. In addition, all past and future JTEG technology forums are posted on the website.
THE JTEG PRINCIPALS
AND KEY REPRESENTATIVES

STEVE MCKEE, P.E.
Director, Enterprise Maintenance Technologies and
CTMA Program Manager
Office of the Deputy Assistant Secretary of Defense
for Materiel Readiness (ODASD(MR))
OSD JTEG Principal
+1.571.969.0662
stephen.e.mckee.civ@mail.mil

WILLIAM BAKER
Lead Engineer, Depot Maintenance Division
Marine Corps Logistics Command
USMC JTEG Representative
+1.229.639.9104
william.baker@usmc.mil

JOSEPH SPARKS
Lead, Advanced Technology & Innovation
Commander Fleet Readiness Centers (COMFRC)
NAVAIR JTEG Principal
+1.301.757.3042
joseph.c.sparks2.civ@us.navy.mil

ROBERT E. KESTLER
Advanced Technology & Innovation (ATI) Lead
Engineer
Fleet Readiness Center - East (FRC East)
Naval Air System Command (NAVAIR)
NAVAIR JTEG Representative
+1.252.720.8516
Robert.a.kestler.civ@us.navy.mil

JANICE BRYANT
Sustainment Technology Program Manager
Naval Sea Systems Command (SEA 05T1)
NAVSEA JTEG Principal
+1.360.507.8745
Janice.k.bryant@navy.mil

SEAN COGHLAN
Division Chief, Engineering, Technology, and
Technical Policy
Directorate of Logistics, Civil Engineering, Force
Protection, and Nuclear Integration
Air Force Materiel Command, Wright-Patterson AFB
USAF JTEG Principal
+1.937.904.0855
sean.coghlan@us.af.mil

JASON VALCOURT
Logistics Management Specialist, Depot
Maintenance /Inter-service Programs
HQ Army Materiel Command, G-3 Supply Chain
Management Directorate
US Army JTEG Principal
+1.256.450.8257
jason.w.valcourt.civ@mail.mil

EDILIA CORREA
Chief/Process Owner, Technical & Quality
Assurance, J344
Defense Logistics Agency, Organic Manufacturing
DLA JTEG Principal
+1.571.767.1585
Edilia.Correa@dla.mil

DEBBIE LILU
Vice President, Maintenance and Sustainment,
Business Development
National Center for Manufacturing Sciences (NCMS)
CTMA Program Principal
+1.734.262.0758
Debbie.Lilu@ncms.org
MIC Publicity Leads to Successful CTMA Projects

MIC finalists can go on to complete CTMA projects

The National Center for Manufacturing Sciences (NCMS) has a long-standing interest in the MIC, as the technology solutions featured have potential to evolve into projects through NCMS’s Commercial Technologies for Maintenance Activities (CTMA) Program. NCMS is pleased to support the MIC by providing $50,000 of in-kind support to both the overall MIC winner and the People’s Choice winner.

From hands-on technologies that make routine maintenance tasks safer and more efficient, to combating obsolescence, all the way to digital innovations that can diagnose, prevent, and even predict future maintenance needs, CTMA initiatives have led the way in getting the best technology into the hands of our warfighters.

Several MIC finalists and overall Award Winners have gone on to complete successful CTMA Projects:

2019 Finalist – Atmospheric Plasma Coating Removal

Atmospheric Plasma Solution’s (APS’s) PlasmaBlast® system improves small-scale coating removal operations required for shipbuilding and naval maintenance.

2016 Overall Winner – LASLAT Inspection System

Through a 2017-2018 partnership between Thermal Wave Imaging (TWI) and the Air Force, the LASLAT system—an NDI technology that uses thermography to inspect large areas of composite aircraft—was successfully demonstrated to have the capabilities the DOD requires. A key advantage of the LASLAT system is its portability: technicians can move the system directly to the aircraft instead of taking it to another location.

The judges at the competition immediately saw the benefits of APS’s coating removal technology. This resulted in a successful CTMA Project “Validation of Efficiency and Effectiveness of Atmospheric Plasma Coating Removal,” an evaluation and study initiative that is taking place at Norfolk Naval Shipyard.

Glenn Astolfi, President of Atmospheric Plasma Solutions, said, “Being a member of NCMS and working closely with the CTMA program has been invaluable. At NCMS events, we were able to demonstrate the system to hundreds of maintainers, who brought it to their command’s attention and showed that it fills a very important need. The CTMA Program gave us access and visibility we otherwise may not have had.”
Automated inspection routines eliminate manual positioning, providing repeatable inspections. The system can cover an inspection area of 17 feet by 15 feet at the rate of 7 ft² per minute, operating at up to 12 feet. This technology uses a novel thermal projector to excite an inspection zone on the aircraft surface thermally. The CTMA project demonstrated LASLAT on the Northrop Grumman RQ-4 Global Hawk, a remotely piloted surveillance aircraft. Before this technology existed, it took roughly 10-14 hours to scan one blade. With LASLAT, it takes 3-4 hours. This 70% reduction of inspection times for the NAVAIR FRC-E V-22 prop rotor blade saves an average of 625 labor hours annually.

Yet intermittent faults are notoriously difficult to identify due to nano-second fault durations and the many thousands of circuit paths in complex electronics. Intermittent faults typically result in no fault found (NFF), due to conventional test equipment’s inability to detect them, costing the DOD $3 billion annually.

Universal Synaptics collaborated on a CTMA Project to solve this problem by implementing the Intermittent Fault Detection and Isolation System (IFDIS) at Fleet Readiness Center Southwest, Hill Air Force Base, and Ogden Air Logistics Complex (OO-ALC). The project paid for itself in less than one year. A subsequent CTMA project, completed in 2019, expanded the project’s success to the Naval Surface Warfare Center, Crane Division.

The CTMA Program is a streamlined and agile non-FAR based contracting vehicle to demonstrate, evaluate, and validate innovative technology. Over the past 20 years, the CTMA Program has helped to transition innovative commercial technologies to support DOD maintenance and sustainment.
CONGRATULATIONS TO OUR 2020 MAINTENANCE INNOVATION CHALLENGE WINNER!

In 2020, one innovation won both the Overall Technology Award, selected by senior DoD logisticians, and the Peoples’ Choice Award, determined by audience vote.

2020: AUGMENTED REALITY REMOTE MAINTENANCE SUPPORT SERVICE (ARRMSS)
Aristides Staikos, US Navy NAWCAD Lakehurst

Augmented Reality Remote Maintenance Support Service (ARRMSS) is an enabling technology for the AR for Maintainers Vision.

ARRMSS provides the on-demand ability for a fleet maintainer to communicate directly with a remote Subject Matter Expert (SME) as though they were co-located in a maintenance space.

Video and audio transmissions combined with spatial mapping data to allow users on both ends of a network to troubleshoot problems and step through particularly challenging repair tasks/engineering investigations collaboratively, regardless of geographic location.

ARRMSS is an in-house designed application framework that connects a SME (using a Windows PC/tablet) to a maintainer (wearing a HoloLens 1 or 2) and allows for the transfer of applicable data over a DoD network:

- Internet standards-based Audio/Video/Data Transmission Protocols
- Remote Expert and User Hologram Placement
- Novel algorithm developed to minimize bandwidth usage
- Network Adaptability
- Session Recording
- PDF and text document sharing
- 3D Model Sharing
- Photo Sharing/Editing
Overview:
The annual DoD Maintenance Innovation Challenge (MIC) provides an opportunity to highlight the innovative spirit and world-class capabilities resident in our sustainment community. This year the MIC received 92 submissions from which the Joint Technology Exchange Group principals selected six finalists based on criteria including technical maturity, feasibility, and cross-Service applications.

Moderator:
Steve McKee, Director, Enterprise Maintenance Technologies, Office of the Deputy Assistant Secretary of Defense for Materiel Readiness

Finalists:

Cold Spray Pop Up Production Cell
Submitted by Jeff Campbell, NUWC Keyport, NAVSEA 05T/VRC Metal Systems
Presented by Jeff Campbell, NAVSEA Cold Spray Project Manager
 Brett Anderson, NAVSEA 05T
 Kiley Plooster, VRC

E-Drill: A New Way to Remove Aircraft Fasteners
Submitted and Presented by Jared Wright, Naval Air Systems Command/
Jim Becker, Perfect Point EDM

Fiber Optic Fusion Splice Repair
Submitted and Presented by Brett Jordan, Air Force Research Laboratory
Technical Sergeant William Kesler, Air Force Sustainment Center

Letterkenny Army Depot (LEAD) Innovative Cold Spray Repairs
Submitted by Sam Evans, The Pennsylvania State University Applied Research Lab
Presented by Ashley Filling, LEAD
 Sam Evans, PSU Applied Research Lab

Metal Components from Hybrid Additive Manufacturing
Submitted and Presented by Slade Gardner,Ph.D, Big Metal Additive

Witness Integrity Sensor Platform (WISP)
Submitted and Presented by Seth S. Kessler, Ph.D., Metis Design Corporation
COLD SPRAY POP UP PRODUCTION CELL

JEFF CAMPBELL

NUWC KEYPORT/NAVSEA 05T
jeffrey.d.campbell.civ@us.navy.mil
+1.360.900.8715

Description: Pop Up Production Cells provide an ability to implement technologies quickly in an agile manner to provide immediate effect. The implementation of Cold Spray Pop up Cells allows for the rapid repair of naval asset parts with a reduced turnaround time of weeks vs. years. These cells offer an agility to renew and mature the technology with an average implementation from funding to open of 90 days. Implementation is modular vs. singular and incorporates organic ties with industrial bases, industry, and academia.

Background: Cold Spray is being used to perform dimensional repairs on a number of components used in Navy, DoD, DoE, and US industrial base components. The technology is commercially available, and systems can be designed for specific applications as well as several Cold Spray powders being commercially available. Cold Spray is being implemented in the public shipyards, submarine repair facilities, NAVAIR repair centers, Naval Warfare Centers, Marine depots and by the Army and Air Force. Significant development effort is focused on developing structural repairs, additive manufacturing, and fabrication of new components.

Problem/Opportunity: The development and implementation of cold spray pop up cells expedites new technologies and addresses the following issues:

- Identification of space for implementation of new technology
- Training and certification of operators
- Long lead times for construction and installation
- Disposal of equipment of at end-of-life
- Non-uniform implementation
- Isolation from innovations in the industrial base and academia
- Long lead times for repair
- Access to the latest state of art technology in a rapidly evolving field

To rapidly capitalize on this emerging technology and quickly provide repairs to our military assets, Pop-up Cells have been developed to conduct repairs near the point of use. The average time from funding to operation of these cells is 90 days. That’s 90 days to install a repair technology that can provide fast and reliable dimensional repairs on a number of components used in Navy, DoD, DoE, and US industrial base.

Performance: Pop-up Cells expedite the Navy’s maintenance and repair processes and is currently in use, being fielded to perform repairs much faster than the Navy’s previous method, helping resolve maintenance backlogs, improved ship’s conditions and on time delivery. Additionally, the pop-up cell concept is defining a new best practice for rapid transition of other technology-based solutions to benefit the Navy and the organic and defense industrial base. The cell concept will continue to expand with additional cells in other locations for cold spray other emerging technologies.

Next Steps/Benefits: There is one operational Pop-up Cell in use in Chesapeake, VA with the second funded Pop-up Cell currently being developed in San Diego, CA. A third is being planned dependent on additional funding.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of new technology can take several years and requires significant investment in facilities and personnel.</td>
<td>Pop up Production Cells provide an ability to implement technologies quickly in an agile manner to provide immediate affect. Technology transition time is reduced to weeks vs. years and offers speed and agility to renew and mature. Implementation is modular vs. singular, and incorporates organic ties with industrial bases, industry and academia.</td>
</tr>
<tr>
<td>The development and implementation of cold spray pop up cells addresses the following specific issues:</td>
<td>Cold Spray Pop up Cells have been developed to conduct repairs near the point of use. The average time from funding to operation of these cells is 90 days.</td>
</tr>
<tr>
<td>- Identification of space for implementation of new technology</td>
<td>Big Wins:</td>
</tr>
<tr>
<td>- Training and certification of operators</td>
<td>- Repaired 3- elevation shafts, saving $30K each that were previously unrepairable</td>
</tr>
<tr>
<td>- Long lead times for construction and installation</td>
<td>- Used a preexisting Qualified Spray Procedure to repair 2- large valve discs, $70K savings each. 1st one completed in 4 days, second one 7th day</td>
</tr>
<tr>
<td>- Disposal of equipment of at end-of-life</td>
<td></td>
</tr>
<tr>
<td>- Non-uniform implementation</td>
<td></td>
</tr>
<tr>
<td>- Isolation from innovations in the industrial base and academia</td>
<td></td>
</tr>
<tr>
<td>- Long lead times for repair</td>
<td></td>
</tr>
<tr>
<td>- Access to the latest state of art technology in a rapidly evolving field</td>
<td></td>
</tr>
<tr>
<td>Drive RTOC with future acquisitions and logistical footprints with the CM model</td>
<td></td>
</tr>
</tbody>
</table>

TECHNOLOGY SOLUTION

Cold-spray cells expedite the Navy’s maintenance and repair processes and is currently in use, being fielded to perform repairs much faster than the Navy’s previous method, enabling access to resolve maintenance backlogs, improved ship’s conditions and on time delivery. The pop-up cell concept is defining a new best practice for rapid transition of other technology based solutions to benefit the Navy and the organic and defense industrial base. The cell concept will continue to expand with additional cells in other locations for cold spray other emerging technologies.
The removal of “permanently” installed titanium fasteners may be the most difficult, labor intensive, and error prone part of depot level aircraft maintenance. In the current process, which has been industry standard for decades, a highly skilled artisan must drill out the fastener head manually. This process takes several minutes, generates scores of hazardous shavings, and exacts a substantial toll both in terms of maintenance induced damage, as well as severe ergonomic risk to the artisan. It is not uncommon for major portions of an aircraft to be damaged beyond repair due to damage caused by manual drilling. Additionally, artisans are at great risk for needing shoulder surgery due to the strain of manual drilling.

Now there is a better way. Perfect Point EDM, a small business from Huntington Beach, California has invented a new way to remove aircraft fasteners: the E-Drill. E-Drill uses a semi-automated, plunge cut Electrical Discharge Machining (EDM) tool to remove a fastener in seconds. Artisans use provided tooling to properly align E-Drill’s copper electrode, pull the trigger, and E-Drill completes the drilling process. E-Drill has a different cut profile for each fastener type, cutting down to where the head of the fastener meets the pin, leaving a thin (~0.015 inch) ligament of fastener material remaining. A provided Single Shot Air Punch tool is then used to sever the ligament. The removed fastener is in two pieces: head and pin. No shavings.

E-Drill uses vacuum assisted alignment jigs to assist artisans in properly aligning the electrode. These ergonomically designed jigs enable E-drill to access >95% of aircraft fasteners, including upside down, curved, or vertical sections. Artisans only need to provide enough force to compress two O-rings, which prevents the EDM di-electric/coolant fluid (water) from leaking. This drastically reduces the amount of physical strength required to remove a fastener, dramatically reducing the strain on the artisan. Proficiency with the tool takes hours, far less than traditional drilling. Studies show at least a 75% reduction in aircraft damage, and a 20x reduction in time to remove a fastener.

NAVAIR has been working toward implementation of E-Drill for the past 3 years, collaborating with Perfect Point, the Air Force, and other industry partners to solve technical problems, improve the product, and build the base of technical data necessary for regulatory approvals. On August 18, 2022, NAVAIR issued an official Authorization Letter, clearing E-drill for use on an initial set of general use cases. This represents the first broad approval (beyond individual point-solution applications) of E-drill for any major element within the DoD. This initial authorization, while limited in scope, was intended to speed the deployment of E-drill into the hands of artisans. NAVAIR continues to work toward increased approvals and use cases as more data and technology solutions become available.

PROBLEM STATEMENT
The removal of “permanently” installed aircraft fasteners, by manual drilling, is often the most difficult, time consuming, and dangerous aspect of depot level aircraft maintenance. Damage from this process, to both aircraft and artisan, is common, and a major cost driver.

BENEFITS
- 20x reduction in drilling cycle time
- 75% reduction in maintenance induced damage
- 30x reduction in consumable costs (no drill bits)
- Supplied tooling can access ~95% of fasteners
- Elimination of FOD: no drill shavings
- Closed loop system: no HAZ waste
- Less heat put into the part
- Alleviates ergonomic strain to artisan
- Reduced training time

TECHNOLOGY SOLUTION
- E-Drill is a semi-automated, plunge-cut Electrical Discharge Machining tool that uses electrical energy to machine away fastener head material
- Alignment tooling enables fast cycle time, high accuracy, and reduction in maintenance induced damage
- Designed with the artisan in mind: elimination of ergonomic strain
- Only requires 110V electric + shop air
- Recent NAVAIR official use authorization

Graphic or Image

NAVIAIR Public Release 2023-418
DISTRIBUTION A. Approved for public release: distribution unlimited.
Fiber optic cables are used extensively in modern military aircraft for moving large amounts of information between systems. Unlike copper wiring, there is no approved procedure for repairing fiber optic (FO) cables onboard aircraft (“in situ”). Current practice is complete, end-to-end replacement of damaged FO cables on aircraft. The procedure is intrusive, time consuming, and negatively affects aircraft readiness.

The Aircraft Battle Damage Repair (ABDR) office desired a practical FO repair system suitable for field repairs that meets the following characteristics:

• Permanent
• Reliable
• Low loss
• Minimum increase in tooling

The starting point was a Boeing approved kit for use in commercial Boeing aircraft.

The kit modifications and the fiber cable type changes required the fusion splices be tested for performance and durability. A series of tests based on AS6506 Fusion Splice for Aerospace Fiber Optic Cables were developed with assistance from the Joint Aviation Fiber Optic Working Group (JAvFOWG). The AS6506-based tests would verify the splices meet necessary mechanical and environmental withstand requirements. The testing plan was approved by the ABDR office.

The key criterion for success was splice insertion demonstrated 0.5 dB or less of loss as compared to the pre-test fiber cable. All environmental and mechanical tests were successful with losses never exceeding 0.23 dB for any test. Modifications to the kit became necessary after initial samples failed tensile tests. These modifications were successful, requiring only minor changes to the kit process and material list.

The splice technique was also tested on a training aircraft at Hill AFB. The link to that testing can be found here: hill.af.mil/News/Article-Display/Article/1961786/fusion-splice-repair-passes-field-tests/

A total of eight fusion splice repairs were made, and they all met the minimal signal loss requirements when measured. Two splices were made on an F-35A Lightning II, and one was made on an F-22 Raptor.

Signal loss is measured in decibels and the test splices averaged less than .02 dB where .5 dB is the maximum allowed. At .02 dB, a single run of cable could feasibly be spliced 25 times and still meet performance standards.

The field test demonstrated that a trained maintainer with the proper equipment can perform an acceptable fusion splice repair on an aircraft in roughly 20 minutes once the damaged section is isolated and made accessible. The current practice of replacing a damaged fiber optic cable can take hours and sometimes days.

PROBLEM STATEMENT

• Unlike copper wiring, there is no approved procedure for repairing fiber optic (FO) cables onboard aircraft (“in situ”).
• Current practice is complete, end-to-end replacement of damaged FO cables on aircraft.
• The procedure is intrusive, time consuming, and negatively affects aircraft readiness.

BENEFITS

Fiber Optic Fusion Splice Repair tooling allows:

• Permanent repairs to broken fiber cables
• Reliable splices
• Low loss splices
• Minimum increase in tooling for maintainers
• Increased readiness of 5th generation aircraft to deter near peer adversaries

TECHNOLOGY SOLUTION

• The starting point was a Boeing approved fusion splicing kit for use in commercial Boeing aircraft.
• Fusion splicing is the least-loss method of repairing fiber optic cables; non-fusion techniques typically have greater losses and might not meet loss goals.
• The Air Force Research Laboratory’s Electrical and Electronic Materials Evaluation Team and ABDR worked together with Aurora Optics, Inc. to adapt this commercial, fiber fusion-type of repair technique to work with military-type fiber cables.

Commercial version of the fiber fusion splice repair kit. Military version is visually identical

Fiber fusion splice repair underway on training F-35
LETTERKENNY ARMY DEPOT (LEAD) INNOVATIVE COLD SPRAY REPAIRS

SAM EVANS
Pennsylvania State University Applied Research Lab
sse11@arl.psu.edu
+1.814.863.5961

Introduction: Letterkenny Army Depot (LEAD) maintains and repairs land-based vehicles and missile systems. Engineers at LEAD constantly evaluate new and emerging technologies to increase their capabilities and reduce repair cost and time. Several years ago, LEAD identified Cold Spray (CS) as an enabling technology and began to identify critical applications. Early applications focused on restoring corrosion damage on aluminum components. LEAD worked closely with the Applied Research Lab at Penn State University (ARL/PSU) to develop and validate CS repairs on several aluminum components. The repairs were performed at ARL/PSU. The success of this effort led to the installation of a CS system at LEAD in 2015, with certification complete in 2021. LEAD artisans grew their skills and familiarity with the technology on noncomplex corrosion repairs. The investment and effort to bring CS online at LEAD showed its true value in recent repairs to the High Mobility Artillery Rocket System (HIMARS) and Patriot Missile System.

Problem: HIMARS and Patriot systems had significant corrosion in critical locations.

There was no approved repair process for the HIMARS. Cost to replace the cab was $750,000 with 18 months lead time. Repair was possible for the Patriot, but it would add 14 weeks lead time. Both HIMARS and Patriot availability was critical due to current geopolitical situation (e.g., Ukraine).

Technology Description: Cold Spray is a solid-state process that allows for the rapid deposition of various metals at temperatures below their melting points.

Current Development Status: Research to develop and deploy CS technology in industrial settings has been ongoing for several decades. The use of this technology is relatively new to DoD depots and maintenance facilities due to the necessary funding, safety approvals, training, and deployment challenges. LEAD is one of the first depots/maintenance facilities to implement stationary CS technology. This capability made it possible to perform CS repairs on large vehicles in the field without removing the component. Development of these repairs requires consultation with researchers with experience in the use of unique applications of CS and the ability to certify the repair. LEAD worked closely with ARL/PSU to build their CS capability and to certify their artisans. ARL/PSU quickly teamed with LEAD to develop and certify the HIMARS repair.

Test Data Supporting Performance Claims: ARL/PSU has successfully developed and transitioned a number of CS applications to the Navy and Army.

Next Steps/Potential Benefits: Cold Spray technology has been implemented in many DoD industrial operations, but largely in isolation. The technology’s benefits and capabilities are now proven. Services should initiate a consolidated effort to collaborate across all industrial operations in order to rapidly advance the capabilities this technology offers.

PROBLEM STATEMENT

- Traditional repairs on weapon systems and assemblies are not possible due to excessive heat causing damage to layered materials or electronic components/wiring in close proximity
- High Mobility Artillery Rocket System (HIMARS) corrosion repair of 46100 armor with composite layer (Dyneema)
- Patriot 6061 aluminum repair in proximity to wiring

BENEFITS

- **HIMARS (x3):**
 - Repair: $1200 vs. Cab Replacement: $750K, 18 months lead time. Total savings: $2.25M
 - **Patriot:**
 - Repair = Replacement cost. Saved 14 weeks lead time.
 - Innovative mobile application of Cold Spray on systems continues to reduces costs and lead times
 - Demonstrates value of depot modernization efforts

TECHNOLOGY SOLUTION

- Letterkenny Army Depot (LEAD) recognizing the geopolitical criticality of both weapon systems expanded the envelope of its fledgling Cold Spray capability to complete these repairs.
- Collaborated with Cold Spray research and development team at The Pennsylvania State University Applied Research Lab for assistance with mobile equipment and certification
- LEAD continues to grow Cold Spray capability to enable unique repairs on system to reduce cost and project delays due to parts lead times

On-System Cold Spray Repairs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patriot repair – wiring in proximity of repair</td>
<td>HIMARS repair – composite armor</td>
</tr>
</tbody>
</table>

sae.org/dod | Maintenance Innovation Challenge | 15
Supply and availability of metal castings, forgings and even large billet have become a critical issue for maintenance and sustainment in all industrial sectors and branches of the DoD. Repair and maintenance schedules suffer even more for demanding pressure rated components especially larger than 15 inches in diameter. Critical components such as valves, fittings, manifolds, inlets, and vessels can sideline heavy equipment and facility operations when replacements are not quickly available.

Hybrid additive manufacturing (AM) has been validated to TRL 7 (Technology Readiness Level) for pressure components on Navy Unmanned Underwater Vehicles (UUV). This manufacturing technology combines large scale metal AM with 5 axis CNC machining to produce dimensionally tolerant, finish machined products that are ready to use without additional post processing. Metal components are produced quickly using industrial scale AM. Machining can occur at intermediate periods of the production, so interior surfaces that may not be accessible later, can be machined before the part is completed. Finish machining of exterior surfaces can occur as a final step using the same machine, reducing schedule by continuously using the same fixtures, clamps, and positioning. A wide variety of metal alloys are compatible with hybrid AM to meet a broad range of applications.

Full sized 21-inch diameter aluminum pressure vessels were tested to hydrostatic design loads up to 700 psi and performed above 2,300 psi before failure. These 21-inch diameter vessels have a 95% improvement in lead time and a 63% improvement in cost over traditionally manufactured options.

A customer urgently needed a custom geometry 9-inch diameter pressure component for a UUV ocean test. Hybrid AM was used to produce the component in one week to meet article acceptance testing, integration with the UUV, basin testing and more than 50 UUV missions during ocean trials.

When experts from the oil and gas industry saw this case study, they engaged for first article demonstration and acceptance of 30-inch diameter valves critical to production operations. Valves will be made from low carbon steel and stainless steel. Future components made from duplex steel and Inconel are planned for the next phase of acceptance.
The Witness Integrity Sensor Platform (WISP) was developed as a practical means to accumulate sensor data to facilitate condition-based maintenance (CBM). Having previously experienced the pains of sensor system integration with defense & aerospace assets, the WISP distributed architecture aims to minimize, and in some cases altogether eliminate, the need for cables and connectors. The standalone version (WISP Solo) joins a single sensor with a small (10 cm², 25 g) is magnetically coupled with the WISP Solo, power is inductively transferred to facilitate data collection, which is then transferred to the WISP Reader over Bluetooth Low Energy (BLE). The WISP Reader itself is powered over USB supplied by a phone, tablet or laptop, and data streams are supported for Windows, iOS, and Android. The networked version supports up to 64 WISP Edges (10 cm², 8 g) along a 4-wire daisy-chained cable, each of which can be mated with different sensor types. At the front of the up-to-30m long bus, the WISP Base (10 cm², 10 g) provides power and data services for the entire network through the same inductive/ BLE WISP Reader wireless coupling as the WISP Solo. All WISP hardware has passed environmental airworthiness testing as defined by MIL-STD-810 and DO-160, and the BLE connection has been endorsed by cybersecurity experts at both the USAF and Navy.

WISP accepts any commercial-off-the-shelf (COTS) analog or digital (SPI, I2C) sensor that conforms to the defined electrical and physical interface documentation. Additionally, a suite of carbon nanotube (CNT) based advanced sensors have been developed to leverage the unique benefits of WISP, including those that measure fatigue cracks, the corrosivity and the erosivity of an environment. The most mature of these sensors is the fatigue crack gauge, which uses a thin-film resistive network of polymer nanocomposite (PNC) to track cracks as they grow under the gauge. The gauges are bonded down using aerospace-grade cyanoacrylate adhesive, and cracks permanently physically alter the PNC on a nanoscale, regardless of crack closure, allowing for accurate crack length measurements during or after loading. These gauges also contain built-in compensation for environmental conditions and strain. Through more than 100 fatigue tests we have established a probability of detection a90/95 value of 0.33 mm following MIL-HDBK-1823, and WISP hardware utilizing this crack gauge has been field-tested by the Navy on a submarine and destroyer, and by the USAF on a fighter jet. Aside from defense applications, testing is currently being planned for customers in commercial aviation and the energy (oil/gas/wind) industries.

WISP has been a collaboration between Metis Design Corp., Analog Devices Inc., and the Massachusetts Institute of Technology (MIT), with funding provided through USAF and Navy SBIR efforts.
Spare parts availability across all DOD agencies are plagued with numerous problems; diminishing mfg. resources, long production lead times, high tooling and reverse engineering costs for low quantities spent on old-outdated designs that do not benefit the warfighter. Providing solutions which optimizes weight and perf. and can help improve system reliability, maintainability and supportability helps weapon system readiness and availability to execute missions. AM at the point of need reduces the logistics footprint in theater and allows repairs of systems requiring parts to be completed faster.

Altair proposes a solution that couples proven design optimization technologies with the benefits of AM executed in a model-based workflow. This approach will drastically improve efficiency of the current spare part process and update the old-outdated part designs. This approach will not only solve the noted process problems but maximize the benefits to the warfighter with simulation driven designs that fully exploit the capabilities of AM, optimizes weight, improves performance and reliability, maintainability, and supportability, and reduces the logistical footprint and its associated time and costs.

Potential benefits of the approach is to not only improve the overall efficiency of the spare part ordering process but deliver updated state of the art part designs to support the warfighter. Other benefits include improved system reliability, maintainability and supportability, reduction of logistics footprint, and quicker repairs to improve system availability.

Next steps are to gather additional DOD interest and collect any unique agency requirements. This will maximize the benefits of the tool across all DOD agencies. Once all requirements are understood the team will re-focus on development and refinement of the model-based process management software tool and help to transition the process and tools across the DOD Organic Industrial Base and Defense OEMs.
MELD METAL 3D PRINTED PARTS

WES DOWNS

MELD Manufacturing
wes.downs@meldmanufacturing.com
+1.619.433.9002

The MELD technology solves lead time challenges facing maintenance, lifecycle, new construction, and repair for each branch of the DOD and the respective industries that support their needs.

MELD is a solid-state metal additive manufacturing process that enables parts to be printed in a rapid, repeatable, and reliable manner at a competitive cost.

MELD technology does this by providing the capability to manufacture legacy parts that no longer exist, parts that aren’t accessible in the field, or parts that continually fail or wear out during operation. MELD technology is able to produce these parts at rapid pace, reducing 6-12+ month lead times to a matter of days, while meeting SPEC requirements.

The MELD process is capable of printing large metal parts at scales not yet seen in the metal additive space. The key enabler of this scalability is that, unlike traditional additive processes, MELD is not restricted to small powder beds or costly vacuum systems. The MELD process is an open-atmosphere process and is not sensitive to the operating environment or material surface condition, making it ideal for real-world manufacturing.

This technology allows parts to be made in a way that has never been done before, achieving sizes that have not been thought possible, and printing/making new materials that could not exist before this process.

The timeframe of transitioning the technology for use by the DOD is within the next 1-2 years. There is an ongoing NAVSEA SBIR to be completed in FY22 focusing on printing parts to install onboard NAVY ships under repair. The ARMY is receiving two printers that will be completed by the end of FY22 and will commence printing immediately afterwards. The technology of the materials they are interested in (Aluminum and Titanium) are at a TRL 8-9. Additional materials that have been demonstrated but not yet validated against SPEC have a lower TRL.

Each branch of the DOD is conducting their own validation efforts of the technology to utilize it as they see fit within their branches.

The technology has been through rigorous testing throughout the years and validated by 3rd party sources at every step. Recently the ARMY Research Lab (ARL) tested and validated that the Ti 6-4 printed using the MELD technology exceeds both ASTM and AMS SPEC for Ti 6-4 forgings. The Air Force is in the process of qualifying the MELD Al7075 to forging SPEC by the end of CY21. The NAVY has an NSRP RA focusing on printing in AH36 steel in FY22.

The ARMY has recently awarded MELD the contract to build the world’s largest metal 3D printer (Build Volume: 12ft x 20ft x 30ft) to print monolithic hulls for the underside of tanks.

There are ongoing projects with each branch of the DOD to use the technology within their respective areas, collaboration between branches, and active discussions with OEM vendors/suppliers to understand their needs and how they can utilize the technology to sustain existing equipment and critical components.

PROBLEM STATEMENT

There are lead times in excess of 12 months to acquire parts for maintenance, lifecycle sustainment, new construction, and repair for each branch of the DOD and the respective industries that support their needs.

BENEFITS

- Reducing lead times from 6-12+ months down to days/weeks.
- Manufacture in almost any metallic material, including making new materials that can’t exist without this process.
- Manufacture at the scale of several meters.
- Can achieve repeatable results with forged equivalent properties.

TECHNOLOGY SOLUTION

- Make high quality near net shape parts at a high production rate.
- Repair even unweldable metals – from casting defects to equipment in the field.
- Protect parts with wear resistant coatings that will not delaminate.
- Open up primary manufacturing options by adding features after.
- Join same or dissimilar materials.
Additive manufacturers need to ensure complete traceability throughout the product lifecycle to yield high quality products. With the TIPQA Quality Management Solution, managers can gain complete visibility into the production of every part, sub-assembly, and final assembly to help identify quality issues before they become a problem.

Product genealogy tracks information such as raw materials, equipment usage, inspection results, dates, quantities, lot and serial numbers, including supplier products. The information collected through the product genealogy process is used to measure quality output at each manufacturing stage against the intended product specifications.

Tracking product genealogy within TIPQA increases confidence that comprehensive records will be electronically maintained for audits. Quality records include associated as-built/as-maintained configuration records and nonconformance dispositioning. A digital thread of historical production data is maintained within the system.

Traceable configuration allows users to view a data file of each assembly in a graphical format that can save days, or even weeks’ worth of information gathering.

- Configuration Management / Device History Record
- As-Built serial number relationships
- Nonconformances at any level in configuration
- Open Nonconformances before moved to stock to support build-at-risk
- Device History Record brings quality history together for upper-level item
- Prevents processing with missing operations & serial numbers
- Parts can be identified as Serial or Lot Controlled, or both
- Graphical presentation of build structure with Nonconformances highlighted

TIPQA facilitates compliance to DoD requirements for Counterfeit Parts Avoidance, Mitigation, and Disposition, as well as Diminishing Manufacturing Sources and Material Shortages (DMSMS) sources and material shortages. Parts produced using additive techniques for the aerospace and defense industry must be qualified with Federal Aviation Administration (FAA) on an individual basis. With full visibility into sub-tier suppliers, TIPQA can ensure parts meet this standard and provide objective evidence that supports industry compliance.

Regardless of the method, manufacture, or source, (Work Order, Receive), TIPQA can trace the genealogy of the Part Number and Traceable element combinations such as Serial Number, Lot, Date, Heat Code throughout the build process, including the raw material that is melted to print a 3D part. As-built Genealogy can be reviewed in a report prior to shipment and provided to the end client. TIPQA Temperature Controlled Materials validates the quality of powders used in the additive manufacturing process, manages cure times, and maintains control over temperature sensitive materials.

It is vitally important for manufacturers to maintain component level traceability and product lifecycle records. TIP Technologies can help organizations reach this sophisticated level of quality by tracking the quality of all parts to ensure the highest industry standards.
While General Pawlikowski served as the Commander of the Air Force Materiel Command, she stated, “But the traditional Pentagon systems engineering process is not set up to produce new and updated software with speed”.

Mr. William Roper while serving as the Assistant Secretary of the Air Force, Technology said “One of his most imperative duties in his job is to get the Air Force to a point where it can do agile software development.”

And General John Hayten, as Vice Chairman of Joint Chiefs of Staff, said about software development: “And as of now, the process is a nightmare across the board”.

Advanced Testing Technologies, Inc. (ATTI) took the challenge. Using their own research and development funds, they created a software development tool that provides that agile software development. The Parallel Automated Development System (PADS) can be used to develop software in a fraction of time and funds.

The PADS hardware is a small, carry-on suitcase size, software development station that can be driven with a laptop computer. An additional benefit is that the PADS software development station can also be used to test and repair the unit the software was developed to test. The interface test connector (ITA) can be connected directly to the test station and unit under test. This eliminates the need for extremely expensive test equipment normally needed after software development. This is a game changer in software development. The parallel testing is faster and more accurate than legacy test procedures allowing reduced testing and repair times.

The PADS is a commercial-off-the-shelf (COTS) tool and be ordered from the GSA catalog. This can be the first step in reducing development time, reduce testing time and reducing repair time for all services.

ATTI has demonstrated the PADS to several senior leaders in the DoD and received positive feedback.

Recommendation: Fund a proof-of-concept test to ensure the PADS can meet DoD requirements. Pick a backlogged requirement and watch the PADS fill the need.
Build, Enhance Performance, and Repair metal parts on-demand with FormAlloy’s metal additive manufacturing (AM) technology with digital build certification capability, DEDSmart™. FormAlloy’s metal AM technology offers a versatile, field-deployable metal deposition process that enables its users to handle several different applications including building replacement parts, enhancing existing components for improved corrosion and wear resistance, and repairing high-value components. With FormAlloy’s high deposition efficiency and in-process monitoring, high quality parts are manufactured by machine tool operators up to 100X faster than traditional manufacturing methods and repaired at a fraction of the cost. Advanced coatings can be applied to extend the life of equipment and add vehicle protection.

FormAlloy technology utilizes the widest range of metals within additive manufacturing, and custom alloys can be created quickly to produce unique properties for demanding applications. Feedstock materials are commercially available or may be created on-site from bar stock, further reducing supply chain complexity. FormAlloy systems utilize a simple interface and run-on G-code, a standard used by many machine tools, so that soldiers are easily trained, and skills are transferable to other manufacturing operations. FormAlloy systems run autonomously, without the need for user input, so that parts may be made and repaired efficiently and repeatedly. The autonomous operation of the systems rely on an advanced suite of in-situ monitoring and control to ensure parts are of the same quality and perform equally.

In addition to autonomous operations, FormAlloy systems are equipped with their own DEDSmart™ software suite, enabling data logging and build recording. DEDSmart™ data logs capture all parameter and machine data for the build, ensuring each part has a built-in document with the full build history. FormAlloy data can be exported, and a build summary report is automatically generated which includes a unique report number, machine information, such as serial number, feedstock information, and time-stamped build parameter data. This data file can be customized and used to support digital build certification, ensuring users have full access to how a part was built and can be expected to perform.

FormAlloy on-demand metal AM technology can solve pain points within the DoD maintenance and sustainment communities by offering a deployable, affordable, trainable, and maintainable system to produce high-quality, repeatable metal components now.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need/Problem: Technology capable of</td>
<td>Potential Uses/Impact:</td>
</tr>
<tr>
<td>1. Performing full-quality metallic component repairs</td>
<td>1. Additive Manufacturing - Improved components for enhanced lethality</td>
</tr>
<tr>
<td>2. Producing replacement parts on-demand</td>
<td>2. Lightweight and advanced materials development - Increased vehicle protection and transportability</td>
</tr>
<tr>
<td>3. Applying corrosion resistant coatings</td>
<td>3. Advancing coating for improved corrosion resistance - Extended life</td>
</tr>
<tr>
<td>• Return parts back to service in hours to days instead of weeks to months</td>
<td>4. Advanced joining development - Advanced repair processes</td>
</tr>
<tr>
<td>• High value, complex geometries, large freeform fabricated structures, and functionally graded materials (FGMs)</td>
<td></td>
</tr>
<tr>
<td>• Corrosion damage to military assets costs the DoD Billions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGY SOLUTION</th>
<th>BUILD, REPAIR & ENHANCE METAL COMPONENTS ON-DEMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Metal Additive Manufacturing to BUILD, ENHANCE, & REPAIR On-demand</td>
<td></td>
</tr>
<tr>
<td>• BUILD fully-dense components on-demand</td>
<td></td>
</tr>
<tr>
<td>• ENHANCE existing components with multiple materials to improve strength/corrosion/wear</td>
<td></td>
</tr>
<tr>
<td>• REPAIR damaged components and return to service quickly and cost effectively</td>
<td></td>
</tr>
<tr>
<td>• Widest range of alloy processing - steels, nickel super alloys, copper, titanium, cobalt alloys and exotics</td>
<td></td>
</tr>
<tr>
<td>• Machine programming in G-code is transferable skill to/from CNC machine tools</td>
<td></td>
</tr>
<tr>
<td>• VERIFY with full build control and data logging for digital build certification with DEDSmart™</td>
<td></td>
</tr>
</tbody>
</table>

FormAlloy on-demand metal AM technology can solve pain points within the DoD maintenance and sustainment communities by offering a deployable, affordable, trainable, and maintainable system to produce high-quality, repeatable metal components now.
Deployed systems need replacement of metal parts to sustain operations and maintain operational availability. In expeditionary settings, access to the supply chain is not guaranteed and there is often limited infrastructure. The Navy & USMC continuously explore means to produce replacement parts forward; however, both traditional manufacturing methods and new ones such as metal additive manufacturing, have proven difficult to field and are quite costly. Deployed USMC units are now fielding rapid repair sites that are equipped with polymer-based 3D printing capabilities. The printers in terms of piece-part size, volume, weight, and (critically) material choices limit these mobile manufacturing facilities. This limits the armed forces to small repairs and tooling using small plastic parts.

iMAST/ARL continues to develop the ability to print plastic parts and use those parts to make patterns and molds in which parts are then metal cast. Using this Print Plastic to Make Metal (P2M2) approach, the services can create needed metal parts using well-known, approved materials, with well-characterized material properties that can be larger than direct-metal 3D printed parts, at orders of magnitude lower cost. Our tools and techniques provide design and manufacturing training to consider the entire process from technical data definition, intermediary file format creation, design for X considerations, polymer printing, pattern and mold design, casting, and post-processing in a holistic package that educates and enables others to leverage additive and traditional manufacturing.

Multi-part patterns have been created that exceed 12”x12”x12” in volume.

The next steps are to refine the process documentation, operating procedures, create training material, and perform demonstrations at events such as REPTX. The major benefits are the combination of design freedom via material extrusion additive made at point-of-need, with casting that provides (approved) well-known and accepted processes, material properties, and workflow. This process ultimately reduces the lead time and cost to build necessary parts by orders of magnitude (compared to contemporary metal additive) for necessary metal parts in forward locations.
The Armament Sustainment Division (ASD) (AFLCMC/EBW), Robins AFB, supports many systems across the Air Force that are experiencing diminishing source of supply issues resulting in long lead times and excessive costs ultimately reducing aircraft availability and mission readiness. To combat these issues, the ASD enlisted the help of the Rapid Sustainment Office (AFLCMC/RO)/Advanced Manufacturing Program Office (AMPO).

The RSO’s mission is to increase mission readiness and capabilities by scaling innovative solutions to advance and modernize Department of Air Force sustainment operations. The AMPO is utilizing Additive Manufacturing (AM), Cold Spray Repairs and other advanced manufacturing technologies like reverse engineering tools to support the ASD.

The ASD has converted significant amounts of legacy data into 3D Model-Based Technical Data Packages (MTDP). The MTDP, a machine-readable part definition, supports traditional and advanced manufacturing, enables digital engineering analysis, supports the “Digital Twin,” and streamlines quality control. Reverse engineering tools were utilized to develop and verify technical data.

The initial focus was to solve current and pending supply chain shortfalls, especially those impacting readiness, and evaluate low demand, long lead time items. In a collaboration between EXPANSIA, University of Dayton Research Institute, ASD, and AMPO, the MTDPs and databases were mined to identify parts suitable for the current AM capabilities. To date, approximately 600 ASD parts have been identified as candidate parts for AM.

The AM parts were designed to be interchangeable with traditionally manufactured components. The AM process enables production of complex geometries and part consolidation that are difficult to achieve with traditional methods. The AM parts can be modified to address known failure modes. AM and AM assisted methods are often less costly for limited run parts and those requiring expensive tooling. Cold Spray Repair enables deposition of powdered metal for dimensional restoration. For several parts the process restored bearing and other non-structural surfaces with no impact to the substrate; repairing components that were previously replaced.

To date, 41 Technical Data Packages (TDP) and part sets have been submitted to ASD for approval; 63 additional parts are under development. Many components are scheduled for live fire testing in the Fall of 2022 and several components are fully approved. The development of TDPs for AM ultimately creates an alternative manufacturing source, reduces gaps in the current supply chain, and creates competition amongst existing sources. Approved AM metal and polymer parts have average production times of 60 and 30 days respectively. Current Air Force supply chain lead times for some of these components exceed 400 days. The lead time for delivery of AM armament parts was reduced by one year.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diminishing manufacturing sources (DMS) with large number of investment cast armament parts creating long lead times and excessive cost, resulting in reduced aircraft availability and mission readiness</td>
<td>Alternate sources of supply</td>
</tr>
<tr>
<td>382 Parts identified with lead time over 9 months</td>
<td>AM process can allow for improved geometry, reducing stress concentrations, greater durability, and improving part reliability</td>
</tr>
<tr>
<td>248 Parts identified with lead time over 12 months</td>
<td>AM process can consolidate complex assemblies</td>
</tr>
<tr>
<td>88 Parts identified with lead time over 18 months</td>
<td>Cold Spray can repair parts previously replaced</td>
</tr>
<tr>
<td>Weld repair processes difficult to execute on complex geometries and large areas needing restoration</td>
<td>Reduced Lead Time</td>
</tr>
<tr>
<td>Metal AM parts produced in an average of 60 Days</td>
<td>Metal AM parts produced in an average of 30 Days</td>
</tr>
<tr>
<td>Polymer AM parts produced in an average of 30 Days</td>
<td>Armament part lead time is reduced by one year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGY SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data mining of digital engineering model-based technical data packages and procurement systems to select parts</td>
</tr>
<tr>
<td>Reverse engineering techniques to complete and validate technical data packages</td>
</tr>
<tr>
<td>Additive Manufacturing (AM)</td>
</tr>
<tr>
<td>Direct Metal Laser Melting (DMLM) – Metal Powder</td>
</tr>
<tr>
<td>Fused Deposition Modeling (FDM) – Thermoplastics</td>
</tr>
<tr>
<td>Cold Spray (CS) Repair</td>
</tr>
<tr>
<td>Solid-state deposition of powdered metal for dimensional restoration</td>
</tr>
</tbody>
</table>
The challenge of maintaining a fleet of aging aircraft is immense. According to Air Force Lt General Warren Berry, “an internal review showed 80% of all demand for aircraft parts is satisfied by a repair instead of a replacement...of those part repairs, 92% can only be performed by a single supplier.

The DoD has already identified one solution to fixing this problem: the use of Additive Manufacturing (also known as 3D Printing) as an alternate manufacturing pathway.

In order to realize the benefits of this technology, technical data packages and manufacturing operations need to be validated and qualified. This is essential to ensure the manufacturing information is transferred and implemented correctly, and that all steps along the product life cycle are documented and traceable. Failure to properly qualify parts has a high price: potential malfunction of key equipment, damage to government property, and loss of life.

3Degrees’ TraceAM system allows users to track all their critical information, organizes it for multi-purpose use, and most importantly enables users to share a streamlined data set with internal and external partners. What makes TraceAM unique is that not only can the system collect the information in a central database, but the information can also be consistently structured and exported to additional systems for further analysis and use, differentiating it from any other software solutions on the market.

3Degrees has also developed a testing as a service model to provide surveillance on Additive Manufacturing systems that can translated close to the point of manufacture.

The successful implementation of the TraceAM software would accelerate DAF capabilities to generate accurate, timely, and consistent data packages for existing and future components that could be 3D Printed.
Problem Statement: The goal of this project is to foster innovation, reduce cost, and create a more rapid and agile supply chain for parts affected by long lead times, or DMSMS. This will directly increase aircraft and ground system operational readiness, as it has for our other DoD and industry customers.

The solution mitigates disruption to the supply chain through deploy with the capability to meet requests for critical parts creation, supporting and printing parts faster, and with greater precision while at sea. The DoD needs an ability to reduce the tyranny of distance for supply chains particularly in contested environments. Our Additive manufacturing solution, built on existing secure cloud enclave, will enable a forward advanced manufacturing hub that will improve readiness and expedite battle damage repairs when at sea with the following functions.

Technology Description: Fully Integrated Connected Digital Thread

- Strategic Enterprise System for Product Data – Windchill PLM is considered a strategic enterprise domain application providing digital continuity for product data (Computer Aided Design (CAD), bills of material (BOM), Requirements, Test, Simulation, etc.)
- Platform (Digital Thread Layer) – ThingWorx, Kepware, and Vuforia. These PTC technologies provide integration/contextualization/visualization creating the Digital Thread across other strategic enterprise systems such as MES, ERP, MRO, connected data/device cloud, and into the supply chain (multi-system orchestration). Connecting factory machines leveraging Kepware, PLM, and Windchill is the backbone for this Digital Thread.
- Experience and Interaction – ThingWorx Navigate. As intuitive as an average smartphone app, ThingWorx Navigate enables organizations to dramatically increase productivity and improve collaboration by radically simplifying data access.

Current Development Status of the Technology: The team offers Commercial off-the-Shelf (COTS) products that have been deployed in proven operational environments and are thus TRL level 9 and MRL level 10 on day one.

Test/ Simulation Data Supporting Performance Claims: USMC Digital Engineering for Additive Manufacturing Repository: The US Marine Corps is utilizing PTC’s PLM and 3D CAD platforms for an engineering grade digital repository to provide a single source of truth and digital connection between product data and parts information.

Next Steps/Potential Benefits: This capability offers tremendous capability to the DoD providing a digital thread marketplace for advanced manufacturing which allows members to search and print critical parts on demand.

Bottom Line: PTC OFFERS USE OF EXISTING, DEPLOYED FEDRAMP ENVIRONMENTS FOR TESTING, WHICH CAN RAPIDLY SCALE FOR TESTING AND PRODUCTION AT LOW COST.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
</table>
| Foster innovation, reduce cost, and create a more rapid and agile supply chain for parts affected by long lead times, or DMSMS. This will directly increase aircraft and ground system operational readiness, as it has for our other DoD and industry customers. The solution mitigates disruption to the supply chain through deploy with the capability to meet requests for critical parts creation, supporting and printing parts faster, and with greater precision while at deployed or at sea. The DoD needs an ability to reduce the tyranny of distance for supply chains particularly in contested environments. Our Additive manufacturing solution, built on existing secure cloud enclave, will enable a forward advanced manufacturing hub that will improve readiness and expedite battle damage repairs when at sea with the following functions. | On demand repository for advancement manufacturing parts
React quickly to urgent operational needs in the field
Enable field combatant commanders to collaborate with Program Offices to make timely decisions
Develop organic engineering capabilities that can be forward deployed
High readiness at an affordable cost
Understand aircraft configuration baseline
Modern repository for programs with open data services to:
Support and enhance existing systems
Support the Force
Secure Digital Information
Authorize critical repairs safely and expeditiously
Retain authority and configuration control |

<table>
<thead>
<tr>
<th>TECHNOLOGY SOLUTION</th>
<th>AM Digital Hub</th>
</tr>
</thead>
</table>
| Fully Integrated Connected Digital Thread
- Strategic Enterprise System for Product Data – Windchill PLM is considered a strategic enterprise domain application providing digital continuity for product data
- Platform (Digital Thread Layer) – ThingWorx, Kepware, and Vuforia. These PTC technologies provide integration/contextualization/visualization creating the Digital Thread across other strategic enterprise systems such as MES, ERP, MRO, connected data/device cloud, and into the supply chain (multi-system orchestration)
- Experience and Interaction – ThingWorx Navigate. As intuitive as an average smartphone app, ThingWorx Navigate enables organizations to dramatically increase productivity and improve collaboration by radically simplifying data access. | **Intelligent Capacity Management**
Integration with Demand (ML and Delivered Supplies)
Integration with Supply Chain Planning and Demand Integration
Supply Production Visibility
Supply Chain Visibility and Forecasting
Configuration/Configuration Management & Enterprise Source of Truth
Engineered Program Management
Program Health Management |
AUTONOMOUS LOGISTICS

UHP SHAFT WATER BLASTER ROBOTIC SHROUD

ROBERT BELL
Portsmouth Naval Shipyard
robert.e.bell7.civ@us.navy.mil
+1.207.994.0472

The shafts which Portsmouth Naval Shipyard (PNS) overhauls are massive and must meet the highest SUBSAFE standards before being reinstalled shipboard. A submarine maintenance requirement includes removing a protective Glass Reinforced Plastic (GRP) covering from the shaft which is used to preserve the steel from the undersea environment. Ultra-High Pressure (UHP) water blasting is used in this process, reducing the need for abrasive blast, thus extending the shaft’s lifecycle. Mechanics used to wield a 45-pound jetlance to remove the coating, sometimes for hours on end.

Embracing the NSS-SY goal of completing work ON TIME, EVERY TIME, a new process has been developed to increase the safety of the mechanic while simultaneously decreasing production time. A robotic UHP water blast shroud concept emerged during a Community of Practice event where PNS took the lead in getting the jetlance out of the mechanic’s hands and removing them from hazard exposure.

PNS sought Office of Naval Research funding through the Institute for Manufacturing and Sustainment Technologies hosted by Pennsylvania State University’s Applied Research Laboratory (ARL). Personnel from ARL designed a robotic crawler which runs on a track the length of the shaft. The robot was designed to be capable of moving the metal shroud used to control the debris and excess water coming off the shaft during the overhaul process. The ARL equipment has adjustable speed and direction and multiple safety features such as a sensor to monitor the shaft as it rotates on a drive and idler. If the shaft stops turning, the flow of water is interrupted.

ARL personnel provided equipment training and research and development oversight to the PNS mechanics as they worked on the initial shaft. The resulting first-time quality was impressive and reduced excess rework. Although some hand lance work will always be needed near the shaft ends, this equipment enabled a resource reduction from six to four personnel and reduced shifts from four to two. Together with savings from not enclosing the shaft entirely with Herculite and from reduced clean up time this resulted in saving nearly $10,000 of taxpayer money and two days of critical path float in the schedule.

PROBLEM STATEMENT
A submarine maintenance requirement includes removing a protective Glass Reinforced Plastic (GRP) covering from the shaft which is used to preserve the steel from the undersea environment.

Mechanics used to wield a 45-pound Jetlance for several hours to remove the coating by Ultra High Pressure (UHP) water blasting. This very labor intensive process risked close proximity to the UHP water hazard and fiberglass hazmat. Personnel were required to wear full body Tyvek coverings and double hearing protection as Personal Protective Equipment (PPE).

BENEFITS
Reduction of resources by 67% from six to four personnel and reduced shifts from four to two improved Operational Availability. Together with savings from not enclosing the shaft entirely with Herculite and from reduced clean up time this initiative resulted in saving nearly $10,000 and two days in the Critical Path. Useable across any shipyard or shaft maintenance facility. Next step is to mount the system on an extended flatbed trailer for portability.

Removes Jetlance out of mechanic’s hands and removes them from hazards. Embraces the Naval Sustainment System – Shipyards goal of safely completing work on time, every time.

TECHNOLOGY SOLUTION
Pennsylvania State University’s Applied Research Laboratory (ARL) designed a Robotic Crawler which runs on a track the length of the shaft and is capable of moving a metal Shroud designed and fabricated by Portsmouth Naval Shipyard. The clamshell opening Shroud with telescopic legs surrounds a portion of the shaft and is affixed with an internal UHP blaster for hydro-demolition removal of GRP. The system contains and removes the debris and excess water coming off the shaft with an industrial wet vacuum, has adjustable speed and direction, and a safety sensor to interrupt the water flow if the shaft stops turning as it rotates on a drive and idler.
Sarcos Technology and Robotics Corporation (NASDAQ: STRC and STRCW) and its wholly-owned subsidiaries, Sarcos Defense and RE2, are revolutionizing the workforce of the future across the private and public sectors through an advanced line of industrial robotic systems that augment human performance by combining human intelligence, instinct, and judgment with the strength, endurance, and precision of machines to enhance employee safety and productivity, enable remote operations and reduce operational costs. As a global leader in energetically autonomous, highly mobile, and dexterous robots, Sarcos delivers a compelling return on investment for a range of industries, including automotive, aviation, manufacturing, oil and gas, power generation, construction, logistics and materials handling, defense, public safety, infrastructure inspection, solar, medical, and subsea sectors.

The Sarcos Sapien Robotic Systems are one- or two-armed robots that mount on various surfaces, mobile and lift platforms, making them ideal for helping DoD sustainment teams tackle new build, maintenance, and decommission jobs in the most extreme working conditions – whether at-height, in confined spaces, or working with heavy machinery. They can facilitate dexterous manipulation of tools and the completion of dangerous work, such as surface-prep (wet/dry blasting), welding, bolting/torquing, non-destructive testing inspections at-height, etc. The ultimate goal of introducing teleoperated and autonomous robotic technologies is to increase DoD sustainers’ performance and efficiency without increasing the sustainment manpower requirement. Even more important, worker injuries, accidents, and long-term musculoskeletal stress are reduced. The combined benefits of augmenting the workforce, increasing worker safety, and expanding organic maintenance and repair capabilities will result in a more capable DoD sustainment capability that receives assets on-time, on-budget, and combat-ready.

The Sapien 6M intelligent manipulator offers speed, dexterity, precision, and strength in a compact, lightweight package. With six degrees of freedom, an optimized strength-to-weight ratio, embedded intelligence, and a sleek hardware design that can withstand extreme temperatures and environmental conditions (IP66), the Sapien robotic arm can be used for a variety of complex outdoor and indoor applications. When human-in-the-loop control is required, the Sapien robotic arm can be integrated with the Imitative Controller.

PROBLEM STATEMENT

Sarcos Robotics is revolutionizing the future of work across the private and public sectors through its advanced line of robotic products that augment, rather than replace, humans. By combining the intelligence, instinct, and judgment of humans with the strength, endurance, and precision of machines, the result is a workforce that is not only safer but significantly more productive. The Sarcos Sapien Robotic Systems are one- or two-armed robots that mount on various surfaces, mobile and lift platforms, making them ideal for helping DoD sustainment teams tackle new build, maintenance, and decommission jobs in the most extreme working conditions - whether at-height, in confined spaces, or working with heavy machinery. They can facilitate dexterous manipulation of tools and the completion of dangerous work/tasks, such as surface-prep (wet/dry blasting), welding, bolting/torquing, NDT inspections at-height, etc. The ultimate goal of introducing teleoperated and autonomous robotic technologies is to increase DoD sustainers’ performance and efficiency without increasing the sustainment manpower requirement. Worker injuries, accidents, and long-term musculoskeletal stress are reduced.

BENEFITS

- Optimized strength-to-weight ratio, powered with low-voltage DC
- Embedded computing and intelligence means no external control box required, minimizing footprint
- Low profile and hardened mechanical design is resilient to shock and vibration, indoors and outdoors
- Available with torque sensing and control at each joint
- Integrated power and communications for fast communication and easy integration with 3rd party tools and sensors (EtherCAT and Ethernet pass-through available)
- Rugged outer shell is tolerant to harsh environmental conditions, such as precipitation, condensation, and salt spray
- Capable of performing autonomous manipulation using Sarcos autonomy platforms

TECHNOLOGY SOLUTION

The **Sapien 6M** intelligent manipulator offers speed, dexterity, precision, and strength in a compact, lightweight package. With six degrees of freedom, an optimized strength-to-weight ratio, embedded intelligence, and a sleek hardware design that can withstand extreme temperatures and environmental conditions (IP66), the Sapien robotic arm can be used for a variety of complex outdoor and indoor applications. It is compatible with Sarcos autonomy platforms, enabling autonomous mobile manipulation in structured environments, such as in a factory with controlled lighting, and in unstructured environments like outdoor construction sites. When human-in-the-loop control is required, the Sapien robotic arm can be integrated with the Imitative Controller.
Predictive analysis and data-driven processes with quantifiable metrics exist in just about every fortune 500 company. Leveraging data as a resource and a tool can lead to many powerful insights about an organization as to what is working and what is not. It can help shed light on areas that may be bottlenecked or even help identify where resources could be better applied. Human capital and funding can arguably be the two most precious commodities the DoD has when it comes to executing its strategy. By having a better understanding of where and how our resources are being applied, we can potentially increase efficiencies within our processes yielding greater returns on our investment, which in our case is equipment readiness.

During the pandemic, the DoD made Microsoft Teams available as a collaboration platform. This platform now has a suite of integrated power applications available that allow the maintenance community to share maintenance data efficiently and effectively for the command to visualize the status of their fleets. Through one of these applications, Power BI, large sets of data can quickly be transformed into easy-to-understand and visual interactable dashboards. These dashboards can then be auto-updated with a click of a button through a combination of Power Automate and the Army’s data-rich analytics platform Vantage (a foundry-based platform). Utilizing this process, maintenance data can be updated within minutes and be finely tailored at any echelon. Maintenance managers at different echelons can use the same dataset and customize their views so commands at any level are able to visualize their fleets knowing exactly how they are impacting the organization they belong to. This process empowers commanders to be more engaged, have the right information when they need it, enabling them to make better data-driven decisions leading to an increased overall readiness posture.

Beginning in July of this year, a collaboration between HQDA G-46, 82nd Airborne Division, and the Nevada Army National Guard ensued to standardize this process for the maintenance community. The goal of this partnership is to streamline this process and bring it to the rest of the Enterprise. The standardization includes enhancing regular equipment readiness reports like the Equipment Situation and Status Reports (ESR) for automated consumption. The automated process has already been implemented by numerous components of the 82nd Airborne Division and Nevada Army National Guard, which has already led to a reduction in the time required for preparation and publication of these reports by more than 65%. These automated publications include, but are not limited to:

- Division Pacer Reports
- Brigade Signal / Commanders Maintenance Dashboard
- Long Lead Time Part Predictive Analysis
- Fleet Forecasting
- DLA/Depot Critical Part Touchpoints
- Work Order to Purchase Order Crosswalk
- Recoverables

PROBLEM STATEMENT
Predictive analysis and data-driven processes with quantifiable metrics exist in just about every fortune 500 company. Leveraging data as a resource and a tool can lead to many powerful insights about an organization as to what is working and what is not. It can help shed light on areas that may be bottlenecked or even help identify where resources could be better applied. Human capital and funding can arguably be the two most precious commodities the DoD has when it comes to executing its strategy. By having a better understanding of where and how our resources are being applied, we can potentially increase efficiencies within our processes yielding greater returns on our investment, which in our case is equipment readiness.

BENEFITS
- Vastly reduced time spent on pulling and compiling reports; from hours to minutes.
- Interactive visualized equipment readiness posture
- Identify areas of improvement or efficiencies with ease via quantifiable metrics
- Keeps commands in the “know” enabling them to make better data-driven decisions
- Better oversight on resource management
- Uses data to advance the National Defense Strategy
- Cross COMPO and cross service accessibility
- Aligns with the DoD’s 7 data strategy goals aka “VAULTIS”

TECHNOLOGY SOLUTION
Provides on the go insight for a multitude of maintenance related reports and issues. Commands at all levels can have real-time, or near real-time data wherever they are and/or whenever they want it. Rather than relying on static briefing report templates, answers to questions can be addressed on the spot by interacting with the visual dashboards. What gets measured gets managed, and what gets managed gets actioned. But what gives you interactive and visual dashboards, gives you a whole lot more insight on what is working and what isn’t!

EXAMPLE DASHBOARDS
Created by an end-user with feedback from over 100 technicians, the Administrative Data Analysis & Maintenance Matrix program, A.D.A.M.M. for short, is a relational database and Graphic User Interface (GUI) that enables high-resolution Tactical & Strategic decision capabilities from enhanced analysis across multiple dimensions of data points.

The F-35 Enterprise has proven its prowess as an advanced fighter jet, possibly the best the world has ever seen. Yet, its support equipment maintainers are equipped with a less than intuitive non-interlinked maintenance information system. The same degree of advancement seen in the aircraft should be reflective in its support systems. However, that is not the case. Maintainers, specifically support equipment maintainers, are faced with exporting Work Load Reports from ALIS to assess and address the manner in which it prioritizes their ever-increasing workload. The ALIS maintenance information system lacks the necessary interrelated tools to sort, display, and present data for production decisions and analysis.

Data, when presented, or rather, represented correctly, enables us to make informed decisions that move us toward our goals. Too often, elements of data are overlooked; not because we choose to, but because we are unaware of its relation to other sources of information and how connecting the dots can lead to greater perspectives and deeper analysis of our decisions.

Before the production of the Administrative Data Analysis and Maintenance Matrix (A.D.A.M.M.) program, technicians would download what is called a Workload Report; a line-by-line spreadsheet of every discrepancy for each piece of support equipment. Currently, the Aerospace Ground Equipment team at Luke AFB maintains and tracks over 500 individual pieces of support equipment and on average is carrying over 1,100 active discrepancies from month to month. The high number of active discrepancies can be sourced to the time-consuming process (weekly and often daily) of downloading the Workload Report and having to cull the entire list to determine priority work.

Leveraging the power of related data, the A.D.A.M.M. program enables its users to view its assets in a categorical sense. In other words, ADAMM presents information on each type of equipment with health status summaries, part acquisition information, and reporting information that reduces scrubbing and analysis time by nearly 100%.

A solution such as A.D.A.M.M. has proven itself to be a resource of unavoidable value. Its future is antifragile.

PROBLEM STATEMENT

The F-35 Enterprise has proven its prowess as an advanced fighter jet, possibly the best the world has ever seen. Yet, its support equipment maintainers are equipped with a less than intuitive non-interlinked maintenance information system. The same degree of advancement seen in the aircraft should be reflective in its support systems. However, that is not the case. Maintainers, specifically support equipment maintainers, are faced with exporting Work Load Reports from ALIS to assess and address the manner in which it prioritizes their ever-increasing workload. The ALIS maintenance information system lacks the necessary interrelated tools to sort, display, and present data for production decisions and analysis.

Data, when presented, or rather, represented correctly, enables us to make informed decisions that move us toward our goals. Too often, elements of data are overlooked; not because we choose to, but because we are unaware of its relation to other sources of information and how connecting the dots can lead to greater perspectives and deeper analysis of our decisions.

BENEFITS

- Categorical data representation;
- Summary of Master Critical Equipment listing percentages & All Equipment Status stats;
- Rapid one-click email of MEL status to respective recipients;
- Interlinked with live Supply Liaison Requisition document for accurate report of parts;
- In-depth Work-in-Progress (WIP) task listings for Mx & Inspections;
- Rapid Last 5 Movement data retrieval for SPUDS reporting;
- Individualized Reports for Technician work;
- ADAMM’s future is Antifragile;

Each element of ADAMM presents a function that is more intuitively presented to the user over ALIS’ architecture. The entirety of A.D.A.M.M.’s existence is predicated on Theory of Constraint concepts. Its time saving functions have saved hundreds of hours thus far with many more as its functionality increases.

TECHNOLOGY SOLUTION

Leveraging the power of related data, the A.D.A.M.M. program enables its users to view its assets in a categorical sense. In other words, A.D.A.M.M. presents information on each type of equipment with health status summaries, part acquisition information, and reporting information that reduces scrubbing and analysis time by nearly 100%. Real world test findings shows a reduction in data scrub time from 3 hours for a single task down to less than 10 seconds.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
</table>
| The F-35 Enterprise has proven its prowess as an advanced fighter jet, possibly the best the world has ever seen. Yet, its support equipment maintainers are equipped with a less than intuitive non-interlinked maintenance information system. The same degree of advancement seen in the aircraft should be reflective in its support systems. However, that is not the case. Maintainers, specifically support equipment maintainers, are faced with exporting Work Load Reports from ALIS to assess and address the manner in which it prioritizes their ever-increasing workload. The ALIS maintenance information system lacks the necessary interrelated tools to sort, display, and present data for production decisions and analysis. Data, when presented, or rather, represented correctly, enables us to make informed decisions that move us toward our goals. Too often, elements of data are overlooked; not because we choose to, but because we are unaware of its relation to other sources of information and how connecting the dots can lead to greater perspectives and deeper analysis of our decisions. | • Categorical data representation;
• Summary of Master Critical Equipment listing percentages & All Equipment Status stats;
• Rapid one-click email of MEL status to respective recipients;
• Interlinked with live Supply Liaison Requisition document for accurate report of parts;
• In-depth Work-in-Progress (WIP) task listings for Mx & Inspections;
• Rapid Last 5 Movement data retrieval for SPUDS reporting;
• Individualized Reports for Technician work;
• ADAMM’s future is Antifragile;

Each element of ADAMM presents a function that is more intuitively presented to the user over ALIS’ architecture. The entirety of A.D.A.M.M.’s existence is predicated on Theory of Constraint concepts. Its time saving functions have saved hundreds of hours thus far with many more as its functionality increases. |
CLOSED LOOP MOBILE APPLICATIONS (CLMA)

JASON HACKERSON

IR Technologies

jason@ir-tech.com

+1.571.221.1898

PROBLEM STATEMENT

Many military maintenance facilities where maintenance, repair, and construction work is conducted lack a toolset common for private industry facilities. This tool is applications on mobile tablets (smartphones) to assist in conducting calculations, data capture, and automating manual processes. The primary drivers that restrict the usage of these devices are the camera and the ability for the device to access networks which raises vulnerabilities to insider threats. In some facilities, workers cannot enter the physical domain without having their personal devices’ cameras taped over. This inhibits maintainer and their manager ability to take advantage of real time to near real time reporting of process actions and parts inventory and tool accountability. With the lack of these types of tools, military maintainers retain manual methods of operating fraught with handwriting and calculation errors and bulky and fragile paper ensuring that our military’s complex industrial maintenance and repair facilities remain in inefficient paper-based environments slowing down overall repair cycle times.

TECHNOLOGY SOLUTION

Our approach provides applications that use COTS devices where camera use is controlled, and network access limited to approved physical ports by providing a means of data distribution that does not require a network. CLMAs use specially designed Visual Codes to transmit and receive data. CLMAs provide the ability to record inspections and maintenance actions as well as provide the ability to support users’ complex calculations. In a Closed Loop environment, workers check their tablets/devices in and out, like other tools at the beginning and end of shifts or workdays. Since these devices are network limited (either through physical switches or operating system passcodes) and physically controlled, the threat of unauthorized pictures or data leaking from the devices is greatly reduced.

Approach: IR Technologies proposes Closed Loop Mobile Applications. CLMAs foster the concept of treating smartphone sized tablets as tools for maintainers. Although the approach can support a Bring Your Own Device (BYOD) environment, we know that the military already procures and uses purpose-built devices that use RFID and Barcode scanning to support operations. Our approach provides applications that use these or similar devices where camera use is controlled, and network access is limited to approved physical ports by providing a means of data distribution that does not require a wireless network. CLMAs use specially designed Visual Codes to transmit and receive data. CLMAs provide the ability to record inspections and maintenance actions as well as provide the ability to support users’ complex calculations. In a Closed Loop environment, workers check their tablets/devices in and out, like other tools at the beginning and end of shifts or workdays. Since these devices are network limited (either through physical switches or operating system passcodes) and physically controlled, the threat of unauthorized pictures or data leaking from the devices is greatly reduced.

Benefits: The benefits of having digital tools are manifold. Data entry errors from handwriting and manual calculation are greatly reduced. Under the Closed Loop construct, data is only humanly handled once. Users have assurances that complex calculations are completed accurately and due to the unique method of data transfer, information is exchanged rapidly and correctly. Calculations can be doublechecked by another user on a separate device on the spot. Paperwork and process requirements decrease, and reporting speeds increase. This culminates in improved safety along with reduced maintenance and repair cycle times.

Example CLMA: Worklog
In dynamic DoD maintenance environments, exceptional tool control still alludes even the most disciplined units. Damaged equipment, aircraft returned from flight, ramp freezes, and countless maintenance man-hours searching for lost tools are all symptoms of inadequate tool control. While “smart” toolboxes have offered some progress, they are expensive, generally can’t be used outdoors, and don’t provide accountability once the tool is out of the box. What if a “Web of Accountability” could track tools within a hangar or designated flight line area?

Through precision integration of Real-time Location System (RTLS) technologies at the macro and micro levels, Andromeda Systems Incorporated (ASI) has created a Web of Accountability with the “Small Tool Inventory & Location Tracking System” (STILTS). Every tool is tracked from its point of origin to the point of maintenance and back. The RFID “lock” and Web of Accountability contain the story of a tool’s journey within ASI’s software, so maintainers are not left trying to recreate the day’s events to find a lost tool. “Who last had contact with the tool?”, and most importantly, “Where is it currently?”, are questions that will be readily answered with STILTS. Used more proactively, the real-time accountability of tools also helps leaders assess maintenance discipline throughout the day by allowing them to quickly evaluate adherence to tool control policies at a point in time. The rapid validation of tool control discipline, especially during shift changes, makes STILTS an invaluable management tool.

STILTS integrates existing technology, so the system is very stable and robust. Due to the rapid evolution of RFID technology, the open architecture within STILTS has allowed for easy adoption of even smaller, more powerful tags and antennas as well as the inclusion of other sensors. The components used in STILTS range from Technology Readiness Level (TRL) 7 to TRL 9 and the integration and accompanying software are currently assessed at TRL 6 to TRL 9. The current system has been tested in a laboratory setting (software tested/used in field operations) and is ready to be tuned, tested, and further perfected in a dynamic maintenance setting. It is estimated that it will take less than 90 days of prototyping in an operational environment for the integration and software to reach full maturity for scaling purposes.

Following the challenge, ASI will work with potential customers to prototype the capability in a dynamic maintenance environment, preferably an aviation maintenance organization. Once proven for fielding, ASI will provide scaling options to meet customer requirements.

Improper tool control is one of the biggest detractors in DoD aviation maintenance and directly impacts readiness and zaps resources. ASI aims to help the DoD enhance tool control and put maintenance hours where they need to be…producing combat power.

Problem Statement
- In dynamic and fast-paced DoD maintenance environments, exceptional tool control still alludes even the most disciplined units
- Damaged equipment, aircraft returned from flight, ramp freezes, and countless maintenance man-hours searching for lost tools are all symptoms of inadequate tool control
- While “smart” toolboxes have offered some progress, they are expensive, can’t be used outdoors, and don’t provide accountability once the tool is out of the box

Benefits
- Prevents Foreign Object Damage (FOD) due to lost tools
- Increases warfighting readiness at the point of performance
- Recaptures thousands of wasted man-hours spent searching for tools to DoD maintenance units across organizational, intermediate, and depot levels
- Provides tool accountability outside the toolbox
- Solutions can be applied to indoor or outdoor areas (i.e., hangar and flight line) and in deployed locations

Technology Solution
- What if a “Web of Accountability” could track tools within a hangar or designated flight line area?
- Each tool & maintenance asset is tagged with inventory tracking technology to include RTLS (real time locating systems) beacons, UHF passive RFID tags, machine vision identifiers, and operational sensors all cohesively integrated into one backbone
- All tools are tracked from the toolbox or tool room to the point of maintenance and back. The RFID “lock” and Web of Accountability contain the story of a tool’s journey within ASI’s OptiAM software suite
LEVEL 5 AUTOMATED TOOL CONTROL (ATC)

ANDREW LOBO

Snap-on
Andrew.R.Lobo@snapon.com
+1.262.656.4702

Snap-on’s Level5 ATC (Automatic Tool Control) significantly eases the burden of administering a tool and equipment control program by automatically recording the removal and replacement of tools and equipment from a toolbox or locker. Additionally, the availability and readiness of each tool or asset under management can be tracked and reported upon.

Utilizing innovative optical technology at its core, all transactions in an array of boxes and lockers can be summarized in reports automatically generated from the L5 Connect software. Snap-on Level5 ATC systems are installed in thousands of locations globally and across many industries, including defense, energy, civil and commercial aviation, state and local government and manufacturing. It is proven and has been upgraded with features added and expanded since its first installation in 2010. It is secure, with software developed within a NIST/RMF framework.

Thank you for considering Snap-on Level 5 ATC for the Maintenance Innovation Challenge.
When the U.S. Army was deployed, it lacked in theater Communications Security (COMSEC) support. If a COMSEC item became nonfunctional, the responsible unit ordered a new device through standard supply channels and shipped the nonfunctioning COMSEC device to Tobyhanna Army Depot (TYAD) in CONUS for repair or disposal. The process was costly, high risk, and could take as long as six months for a unit to get equipment.

The Tobyhanna Army Depot (TYAD) COMSEC Forward Repair Activity (FRA) Van enhances the U.S. Army Communications Security (COMSEC) readiness by bringing TYAD COMSEC supply and maintenance capabilities to the operational theater. Each COMSEC FRA Van maintains pre-determined stock to offer unit customers for direct exchange (DX), which permits the Warfighter to have functioning equipment immediately instead of waiting for assets to arrive through standard supply channels. Additionally, the COMSEC FRA Van technicians can receive and repair COMSEC items promptly.

Since 2005, the TYAD COMSEC FRA Vans have DX’d or repaired over 23,000 COMSEC items in the operational theaters of Germany, Korea, Kuwait, and Afghanistan. The TYAD COMSEC FRA Vans ensure minimal downtime occurs during supply and maintenance actions allowing units to continue their mission and not risk enemy forces accessing sensitive communications.

The COMSEC Electronic Repair Vehicle-Mobile (CERV-M) is a deployable, self-contained retrofitted 10-ton semi-trailer van that provides Forward Repair Activity (FRA) and Depot maintenance capability for controlled cryptographic devices in operational environment.

The mobile repair center contains a specialized depot data center for COMSEC supported by two qualified COMSEC electronic technicians, and has approved storage for cryptographic devices and classified support equipment, power, heating, cooling, and Local Area Network. Additionally, it has electrostatic repair and test benches capability.

The van is capable of deployment worldwide and has been deployed in desert, mountain, and temperate environments.
Legacy records and disconnected operations create an enormous workload that can slow down or even halt digital transformation initiatives. Teams need to ensure that historical data is available to accurately observe and forecast trends. Organizations may not want to invest the significant resources needed to manually convert their legacy data without a known return on investment.

Together, RedShred and NLign Analytics can solve this challenge by combining RedShred’s documents-as-a-database platform with NLign’s suite of digital engineering tools. RedShred allows 2D PDF data to be quickly ingested into NLign’s spatial database and fortify it as the single source of authoritative truth for digital engineering analysis. Both products are derived from SBIR-funded technology and are eligible for sole-source procurement.

Both NLign and RedShred provide state-of-the-art solutions to their specific domains and combined, would provide a new capability that does not yet exist. In 2017, prior to the A-10 Aircraft Structural Integrity Program’s adoption of NLign’s software, only 17% of the inspection records were of good quality. After adoption in 2019, that number increased to 95% (Hazen Sedgwick, Defining and Developing the Digital Groundwork to Realize Tangible Tactical Advantages). NLign software was estimated to save $325,000 - $700,000 annually in the F/A-18 composite repair program (New Engineering Software Targets Composite Repair Process, FRCSW Almanac). Northrop Grumman estimated in 2016 that deployment of NLign Analytics’ software would save 23% of inspector/quality assurance labor hours (John Crawford et. al., “Digital Thread for Material Review Board”).

NLign is currently deployed and is at a Technology Readiness Level (TRL) of 9. RedShred is currently at a TRL of 6 but is scheduled to be at a TRL of 8 within the next six months. NLign currently has deployments at all Air Force ALCs, several Air Force field locations, NAVAIR fleet readiness centers, and at NAVSEA Surface Warfare Center Carderock. RedShred is currently working with the USAF Rapid Sustainment Office to automate the digitization of tech data for use in flightline modernization initiatives.

Technology Solution
- Our combined solution is to build an ingestion pipeline using RedShred’s platform to automatically create NLign records from paper-based documents.
- RedShred provides database-like access to documents using computer vision and natural language processing to understand and decompose documents.
- NLign provides a 3D digital twin of aircraft to store maintenance records in a spatial database that is proven to accelerate analysis and is trusted across the Department of Defense.
- RedShred and NLign Analytics are both derived from SBIR funded projects and are eligible for sole-source acquisition.

Benefits
- Legacy programs can use the latest digital engineering tools and access all their historical data without a prohibitively priced manual conversion effort.
- New paper records can be easily ingested without needing to devote personnel for data entry.
- Resolves a recurring challenge in building a digital authoritative source of truth for existing platforms - how to leverage existing paper or unstructured data.
- More quickly deliver the benefits of NLign to legacy platforms such as:
 - Improvements in data quality
 - Accelerated maintenance processes
 - Additional reuse of dispositions

This project will build an integration between RedShred and NLign Analytics for a specific form relevant to an existing customer. This effort will take two months and will be deemed successful (and ready to scale) when the integration automatically digitizes documents to within the same standards that would be expected of a human performed conversion.
INTEGRATING 3D VIZ AND SMART FACTORY CAPABILITIES TO OPTIMIZE REFITS

VINCENT STAMPER
NAVSEA, Trident Refit Facility Bangor (TRFB)
vincenct.c.stamper1@navy.mil
+1.360.340.27818

Problem: Trident Refits provides rapid incremental maintenance to maximize operational availability of Trident submarines supporting the strategic deterrence mission. As the Navy transitions to Columbia class, it is essential to optimize maintenance, by maximizing insight from Ohio to drive efficiency through the Columbia lifecycle.

Description: Integrate ‘smart factory’ capabilities developed for industry, with Navy’s existing 3D visualization and collaboration capabilities, to improve cycle time and reduce constraints at Trident Refit Facility Bangor (TRFB). Combining these capabilities will enable: Autonomous monitoring of the maintenance, self-adaptation to learn from new conditions, and dynamic identification of improvement opportunities. Specifically, TRFB will install additional sensors to monitor progress across the refit process against planned activities in the 3D visualization. This data will be integrated into a single model to enable deployment of optimization algorithms. The “training” of these algorithms will be accelerated by leveraging industry models. These models will in turn be used, for regional maintenance centers, and scale for larger maintenance efforts such as fleet availabilities at public shipyards.

Development: TRFB has partnered with NAVSEA, NAVFAC, NCMS, and Synergy360 to scan and deploy 3D visualizations in NAVFAC’s SPIDERS 3D tool. SPIDERS3D is approved for use on the Navy Marine Corp Intranet meeting DOD cybersecurity standards, and is migrating to a Navy Azure Cloud, which will enable rapid scalability. TRF will integrate this tool with Smart Factory solutions developed by Deloitte that have demonstrated results.

Supporting: The SPIDERS 3D tool has already reduced planning and decision-making time for the Naval Enterprise. For smart factory solutions, Deloitte used the approach proposed by TRFB to help Spirit Aerospace deploy a cloud-based production control application that synchronized shop floor with smart devices and predictive machine learning analytics. This solution led to a 15-20% work-in-process (WIP) reduction, 5-10% throughput increase, and 10-20% labor cost reduction, all within Spirit’s WW2 era facility.

Next Steps: Pilot first 100 hours in the drydock work start plan, using asset tracking sensors (RFID, LIDAR, heat sensors, etc.) feeding streaming sensor data, historic data, and updated 3D scans into one integrated physical/digital data model. This will provide remote job sites monitoring. Analyze results, during subsequent dry-docking refits (~four/year), and aggregate with historical data. Develop descriptive and predictive analytics (regression, machine learning, AI) to identify bottlenecks, critical path dependencies, and other key production metrics.

Benefits: Accelerate refit schedules by at least one day per cycle, with target of one week reduction. Apply lessons learned from Ohio to reduce maintenance costs for Columbia program, test optimization approaches, and integrate with fleet maintenance to realize comparable schedule acceleration.
Depots play an essential role in fleet readiness. According to a recent Government Accountability Office report, the US needs to take action to improve depot efficiency and reduce cost. Depot operations are typically slowed by unplanned work, which drives additional engineering analysis and requirement for parts not kitted or readily available.

Boeing’s digital analytics applied to a digital twin medical record of the aircraft (a/c) can vastly improve depot operations by identifying those additional needs and leveraging the data continuously throughout the depot visit.

Boeing has shifted the way we do depot work to transform the customer experience. In pre-induction, our configuration manager tool aggregates multiple sources of a/c history, condition, and configuration for one common view to improve awareness of needs in planning. All non-conformance reports (NCRs) are visualized and interrogated against a hierarchical model of the platform. Predictive analytics provide insight on the incoming condition, enabling early material acquisition and prep of engineering resources needed to resolve the anticipated condition, thus reducing throughput risk. At induction, autonomous a/c inspection is used to identify cracks and external corrosion to increase speed and accuracy. By roll-in, a/c are well positioned for successful throughput because parts are pre-positioned based on predicted needs. The data is interrogated by floor supervision to shape the best outcomes given the unique a/c condition. During maintenance (mx) and mod, a learning system of past mx data is used to enable artisans to be as effective as possible. That set of actions is fed into a workflow optimizer to add speed and decrease labor costs. The process then prioritizes a/c based on workable jobs, NCRs, and parts. Artisans are able to use AR/VR reach-back technology to help accelerate the engineering communication process. Upon return to the customer, all of the activity and configuration changes are updated in the customer's source system to ensure the fleet has the latest information to continuously learn.

Our mid-to-high TRL tools are implemented across F/A-18, F-15 EPAWSS and C-17.

At Cecil Field, we avoided post-induction scope creep that would have resulted in 43% increased work. Our analytics pilot at McGuire AFB has yielded a 12% reduction in unscheduled mx while saving 1,192 mx man hours, and 1,494 NMC hours.

Boeing can support DoD plans to upgrade the industrial base in multiple innovative ways. Boeing is focused on partnerships to enable organic capability while leveraging our expertise, processes, and tools. Next generation depot modernization offers access to a suite of capabilities that optimize scheduling and mx, bringing savings that could fund future mods. We can help DoD depots be more efficient, affordable, and predictable while working to improve the demand signal. We are not just enhancing readiness but also using data to plan for a contested environment.

PROBLEM STATEMENT

Depots play an essential role in sustaining readiness by completing maintenance on time and returning refurbished equipment to the warfighter. According to recent Government Accountability Office (GAO) reports, the U.S. Services need to take actions to improve the conditions of their depots because they impact maintenance timeliness and efficiency. The declining performance over the last ten years at most depots reduced the availability of weapons systems for training and operations. As we look to looming threats across our various Combatant Commands, it is imperative that depot not hamper our readiness for the future fight.

TECHNOLOGY SOLUTION

A suite of digital capabilities to enable more efficient depot

- Configuration Manager: aggregates aircraft history, condition and configuration data to improve depot/mod planning
- Damage/Corrosion Mapper: collects damage reports that can then be actioned using compliant maintenance processes
- By Tail Predictions: enables advanced planning, reduces throughput risk, and offers a heat map with data of predictions
- Autonomous Aircraft Inspection: identifies cracks, increases speed of inspection, and is extremely mobile and adaptable
- Roll in, Maintenance and Roll out
- Optimizer: sequences work flow and decreases labor and costs
- Delivery and Fleet
- Dispatch: prioritizes which aircraft to induct and how to deliver back to fleet to maximize readiness

BENEFITS

Seamlessly integrated, scalable and secure

- Reduce unplanned work
- Maximize supply chain efficiency
- Inform maintainers
- Manage process flow
- Lower O&S costs following depot
- Increase force readiness by minimizing time in depot
- Offering predictability to leadership
- Prepare fleet for contested environment sustainment
F-35 operations are dependent on a connection to the Autonomic Logistics Information System (ALIS) for mission planning, supply chain management, and maintenance. To access ALIS, an internet connection is required to the ALIS server, the Standard Operating Unit (SOU). To access ALIS from a deployed location, you must either deploy the SOU or utilize a Dynamic Multipoint Virtual Private Network (DM-VPN) over a secure connection to “tunnel back” to the SOU. However, both require a high-bandwidth internet connection. Many countries do not have the bandwidth infrastructure to obtain a connection reliable enough to transmit F-35 flight data to the SOU. Additionally, portable Wi-Fi pucks manufactured in certain countries are not suitable for F-35 operations.

Starlink coverage provides greater bandwidth than military SATCOM or a commercial ISP. Starlink internet transfer speeds meet the F-35 SOU requirements. The 48th Fighter Wing at RAF Lakenheath is using Starlink for F-35 deployments as Starlink coverage is broadening globally. One of the greatest benefits of Starlink is that it provides more agility due to portability. When the 495th Fighter Squadron was tasked to deploy with a 48-hour notice, the unit was required to scale the equipment footprint down due to minimal available airlift. Therefore, SOU deployment was not feasible. To tunnel back to the home-based server, high bandwidth is necessary for stable data synchronization, especially in a deployed environment. Starlink enabled a secure tunnel-back connection with a DM-VPN for the duration of the movement.

Another benefit of using Starlink for deployed F-35 operations is the ability to connect to a deployed SOU. The 495th Fighter Squadron deployed the SOU to Greece in July 2022. However, Combat Communication capability was unavailable. The use of Starlink powered and connected the SOU to sustain flying operations for two weeks and transmit flight data for 84 sorties. Using Starlink, whether the SOU is deployed or at home station, requires minimal setup. The small size and easy setup enables more agile movements and reduces the manpower and logistics footprint. Combat Communication Squadrons are in high demand and are limited by available personnel and equipment to perform the mission.

If using Starlink for tunnel-back, the unit can use a faster and more stable process than burning DVDs and transferring data between sites. Using a direct connection to the home base server reduces F-35 maintenance and flight data synchronization time from 8 hours to 36 minutes. On the 495th Fighter Squadron’s short-notice deployment, it took 20 minutes to pull data from the Portable Memory Device (PMD) and zip the files plus 16 minutes to transfer. Maintainers were also able to access ALIS via DM-VPN on personal NIPR laptops.

The Joint Strike Fighter is utilized by three services and multiple partner nations. This process can enable the agility, connectivity, and lethality of all F-35 users.

PROBLEM STATEMENT
- Sustained F-35 operations require an ALIS connection to support mission planning and maintenance
- ALIS connection is achieved through an internet connection to the Standard Operating Unit (SOU)
- High bandwidth is vital for F-35 communication, operations and SOU tunnel-back capabilities
- Many countries don’t have the bandwidth infrastructure to gain reliable internet access
- Portable Wi-Fi pucks have potential for compromised parts
- Combat Communication Squadrons are in high demand, have long lead times, and are limited by number of personnel to perform their mission

BENEFITS
- Provides deployment connection options:
 - Connect deployed SOU without Combat Communication support
 - Tunnel-back to home base SOU via Starlink
 - Allows for a stable and faster process via a direct connection to home base ALIS server vs. older process of burning DVDs and transferring data between sites
 - Reduces F-35 MX/flight data sync time from the 8 hours to 36 minutes
 - A recent test took 20 mins to pull data from the PMDs/zip the files, followed by 16 mins to transfer the information to the server

TECHNOLOGY SOLUTION
- ALIS can be accessed off-station via a Dynamic Multipoint Virtual Private Network (DM-VPN) to the home-based SOU over a Starlink internet connection
- Starlink:
 - Provides quick and reliable connection to either connect deployed SOU or tunnel back to home base network
 - Not reliant on local country ISP/infrastructure
 - Small size allows easy transport and is accessible for Agile Combat Employment (ACE)
 - >1 hour set up time
 - Internet transfer speed meets server requirements
Examine repair processes within MRO&U operations can be tedious and exhausting chore that can include everyone from senior commanders to line technicians. These stakeholders work diligently to recreate a factory floor in their conference room discussions to address constraints. These processes are documented, mapped, recorded, or photographed on dry erase boards and brought back out when necessary, as part of the DoD’s continuous improvement environment. While minor tweaks can occur to ongoing operations, there is often great difficulty in developing “what if” scenarios should there be a change to workload demand and/or resources.

Not unlike the assets they maintain, repair, overhaul, or upgrade, production lines can also be modeled as digital twins within 2-dimensional (2D) or 3-dimensional (3D) configurations. Andromeda Systems Incorporated (ASI) has uniquely combined technologies to do this. The technology includes an enterprise model that synergizes advanced computing capabilities, operations research techniques, and modeling and simulation (M&S) tools to optimize resourcing strategies and business practices as well as maximize throughput and availability. A key enabler of the MRO&U digital twin is ASI’s state-of-the-art Process Capture Methodology (PCM). The PCM ensures that all resources as well as any production idiosyncrasies are effectively harnessed for proper modeling.

ASI’s research indicates that most DoD MRO&U lines can benefit significantly from a 2D digital twin model. The technology readiness level (TRL) for this capability is at a TRL 9 and has been operationally employed to provide an unprecedented view of resource utilization. In multiple simulations covering a decade-long period, resource utilization/readiness scenarios increased over 20% on average over the baseline planning for the H-1 upgrade program. In cases where greater fidelity is required, i.e., heavy industrial manufacturing, a 3-dimensional model might prove to be more advantageous. In this instance, models are currently in development. While the 3D software is at a TRL 9, the application in a production setting is currently at TRL 6.

The MRO&U digital twin is a decision support and analysis tool that provides a holistic view of how all the sites can manage their current maintenance and production workloads. Key metrics are collected including throughput, Turnaround Time (TaT), resource utilization/availability, and backlog. Future workloads can be evaluated, and scenarios can be analyzed to determine their impact. Benefits to all the services throughout the DoD include:

- Reallocating of resources (personnel, machinery, tools) to fill gaps in some locations and relieve excesses in other locations
- Prioritization of components/assets to meet the warfighter’s needs
- Evaluating the ability to meet an increase in demand (surge) across the various sites
- Prioritization of Continuous Process Improvement efforts to reduce TaT and increase

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Accurate assessments of capabilities and capacities within a single DoD repair location can prove elusive, especially across product lines. Add in multiple repair levels (i.e., organizational, intermediate, and depot) as well as other locations and a credible analysis of capabilities and capacities becomes almost insurmountable</td>
<td>- Digitization of maintenance, repair, overhaul, and upgrade processes across multiple activities and locations allows leaders to optimize activities and understand limitations of capabilities and capacity</td>
</tr>
<tr>
<td>- While great gains have been made within the DoD repair organizations to initially identify production constraints, it is often a noniterative and very time-consuming process</td>
<td>- Quickly quantifies and supports objective enterprise-wide resourcing decisions</td>
</tr>
<tr>
<td>- Resources are then modeled and programmed with appropriate attributes in either 2D or 3D environment (depending on required specificity) to create a digital twin simulation that can be easily employed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGY SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ASI has developed an asymmetric advantage with its unique Process Capture Methodology (PCM) to create a digital twin of repair lines (e.g., component overhaul, asset modification, inspections)</td>
</tr>
<tr>
<td>- PCM is used to accurately assess resources (personnel (available hours/skill sets), support equipment, etc.) in repair lines at respective locations</td>
</tr>
<tr>
<td>- Resources are then modeled and programmed with appropriate attributes in either 2D or 3D environment (depending on required specificity) to create a digital twin simulation that can be easily employed</td>
</tr>
</tbody>
</table>
Stottler Henke has studied human expert schedulers making scheduling decisions in critical applications for 25+ years and has implemented these decision-making processes in the world’s most intelligent scheduling software, Aurora. Aurora has been applied to a wide variety of domains, demonstrating its generality, and Aurora has always been shown to generate more optimal schedules in every domain where a comparison has been performed. Most of these comparisons were made by the clients themselves in order to pick the tool that performed best. In the case of Boeing, after they performed a worldwide search for applicable scheduling tools, Aurora beat all competitors, including Boeing’s own internally developed software, which had been specifically optimized for aircraft manufacturing scheduling. The use of Aurora for scheduling has typically meant that 10% to 25%+ more tasks can be accomplished with the same resources in the same amount of time (or the same tasks accomplished in 10% to 25%+ less time) compared to other scheduling methods.

Aurora is a complete software solution that is designed to be easily customized and integrated into new domains. Aurora is used throughout the world to solve many of the world’s most challenging project management and scheduling challenges. For example, Aurora is used by Boeing, NASA, General Dynamics Electric Boat, Mitsubishi, Pfizer, the US Air Force, Bombardier, and many others.

Boeing selected Aurora initially for the final assembly scheduling of the Dreamliner 787 aircraft due to its superior resource-constrained scheduling and is now used on both the commercial and defense side of their business. Boeing was kind enough to provide a subset of real data that Stottler Henke is permitted to share. Even though this subset is much simpler than the actual project, it still reveals the significant difference between the scheduling results. The results of scheduling this Boeing resource-loaded file with different software are as follows:

Primavera P6 115 days
Aurora 102 days

Results with similar improvements have been realized in many different domains. NASA currently utilizes Aurora for some of its most complex scheduling challenges, and Aurora scheduled the maintenance, repair & overhaul (MRO) of the Space Shuttle during its tenure.

Aurora is best leveraged when integrated with other enterprise applications. So, the next step is to integrate Aurora with other DoD data sources for seamless data flow, so that the DoD can receive all the benefits of Aurora, including but not limited to the following:

1) Multiple-pass intelligent resource-constrained scheduling;
2) Large multi-project support; support for 100,000+ tasks per project;
3) Mixed-mode scheduling -- providing both ASAP and ALAP scheduling;
4) Schedule rationale -- Aurora provides an explanation for each task on why it was scheduled where it was scheduled; 5) Support for more types of constraints than other software.

BENEFITS

- Reduce schedule durations 10% - 25%
- Deploying Aurora for all maintenance related scheduling may be the single most beneficial/impactful change to overall efficiency and effectiveness possible.
- Aurora can be used throughout the DoD, improving cycle time, reducing cost & manpower, while improving readiness.
- Aurora is already the most state-of-the-art scheduling solution available, providing more project modeling constraints so projects can be modeled to the level of detail needed.
- Aurora has already been successfully utilized by the DoD (e.g., Air Force satellite downlink scheduling) demonstrating its feasibility and practicality.
From August 22 to September 2, 2022, NAVSEA 05T sponsored the first ever Navy 2022 Repair Technology Exercise (REPTX) event, hosted by NSWC Port Hueneme and conducted aboard the ex-US Paul F. Foster, DD 964, the Self Defense Test Ship (SDTS). During this event, participants were able to apply multiple cutting-edge technologies in real-world scenarios on a working naval asset, engaging with fleet personnel for immediate impact and input. This REPTX team brought a unique technology transfer and engagement opportunity to 68 organizations that included academia, government, and industry partners.

The result of this extraordinary event was the rapid identification of several technologies that are ready for immediate transfer to the fleet to support forward-deployed maintenance and repair. Technologies include the use of robotics, both pier side and at sea, in air and below water drone systems, additive manufacturing, 3D scanning, laser and plasma ablation, cold spray repair, and many, many more. Feedback received from industry participants was overwhelmingly positive, specifically citing the ability to field their technology in a live environment. This engagement allowed for real-time adjustments to technologies in order to better meet the needs of the Navy. Collaboration between participants was crucial to the success of REPTX. As stated by an industry participant: “unique to REPTX, was the spirit of cooperation among the companies attending the event. Participants actively sought out each other’s capabilities, where complimentary, and incorporated them into a variety of scenarios. Many partnerships were forged, and the teamwork and camaraderie among the participants, encouraged by the leadership of NAVSEA and NCMS, were evident throughout the event. Spontaneous cooperation among companies, some even competitors, is not something I have ever witnessed at the scale I saw at REPTX.”

While not all technologies are ready for immediate implementation and tech transfer, the testing phase of many of these technologies allows for further development. Several technologies were identified as ready to be fielded and the transfer of those technologies is underway, utilizing pre-staged funding to support a host of technologies such as the utilization of remote connectivity that provided a mechanism for inexperienced personnel to solve problems with confidence and effectiveness. This damage control scenario that was viewed “live” in Washington DC, Pennsylvania, and Mississippi simultaneously with enough fidelity for comments from all participants.

REPTX was a groundbreaking event that is being viewed by other DoD components as a benchmark of how we can improve the pace of technology transfer. The REPTX event planned and executed in just six months, included five days pier side and three days underway to allow for the fielding of over 68 technologies using over 35 Battle Damage Assessment and Repair (BDA/R) scenarios that were developed in cooperation with the fleet.

Objective:
REPTX addresses identified fleet inspired expeditionary maintenance problems through technology-based solutions

Approach/Solution:
- Allowed partner stakeholders to evaluate current state and potential effectiveness of technology-based solutions
- Real-world scenarios provided teams the chance to field, adjust, learn, and repeat technologies both pier side, underway and in forward locations.
- Provides an experiential learning environment across the organic and defense industrial base to understand how to respond to the unexpected in untraditional locales.

Benefits:
- Rapid assessment and fielding of technology-based solutions at the speed of the need.
- Define technology gap areas to target future investment.

Technologies:
- 68 unique industry/academia/gov partners working towards common goals and creating unique solutions to address Navy needs.
- Demonstrations in 4 key areas:
 1. Visualization
 2. Command and Control Aids (C2)
 3. Forward Manufacturing
 4. Expeditionary Maintenance

Execution:
- 2-week test period executed in Aug-Sept in-port and underway with fleet maintainers as testers onboard the ex-US Paul F. Foster, DD 964, Self Defense Test Ship.
- Current engagement up to CNO levels to prioritize investments.
- Investment protocols pre-staged to ensure rapid investment and implementation.
- Performed iterative repairs to restore operational capability.

Impact to the fleet:
Assessment of the operational relevance and impact technology-based solutions offer for inspection, maintenance, and repairs including:
- Unmanned aerial, ground, and subsurface vehicles
- Forward and expeditionary manufacturing at point of need
- In-situ repair capabilities such as cold spray, robotics, plasma
- Rapid visualization, modeling and reporting

Wins to technology transfer:
- UAV and UUV drones, advanced manufacturing equipment, remote connectivity equipment and software, magnets, Fastorq™ tools, cable pullers, digital planning and maintenance aid, robotic platforms demonstrated at REPTX currently on contract for further fielding exercises to define equipment needs and standardize training.

Impact to industry:
- Ready to field, real-world learning, vector for aligning technology to Navy use cases.
- Nearly all robotic bases became platforms to automate other technology solutions
- SurgeMain sailors utilized technology to remotely communicate with vendors to develop specifications to build a part
- SurgeMain sailor used plasma technology to remove corrosion
- Sonar Scan from an autonomous UUV clearly and quickly identifies hull conditions
For field deployed medical devices, the Defense Health Agency (DHA) does not have an agile, effective, efficient, and affordable process for procuring repair parts in support of combat readiness. This is a significant issue for all service branches as it places our warfighters at tremendous risk of not being able to receive effective combat casualty care due to critical medical devices being out of service. DLA’s medical device Electronic CATalogue (ECAT) is affordable (3.2% cost recovery fee), but the system is not flexible or comprehensive enough for the dynamic nature of a repair parts supply chain. Unfortunately, logisticians must make time-consuming phone calls to difficult-to-reach medical device original equipment manufacturers (OEMs), (often foreign owned), wait on quotes, and purchase with Government Purchase Cards (GPCs). With each service buying repair parts in various ways, tremendous opportunity is lost for cost reduction, data management, and reliability improvements.

Fort Defiance Industries (FDI) proposes to configure our award-winning cloud-based Enterprise Resource Planning system (Acumatica) to provide the DHA an online portal to easily and efficiently procure all medical device repair parts. Military logisticians can set up individual accounts, easily find the parts they need, and buy via the FDI portal with money attached to a blanket purchase agreement (BPA), Indefinite Delivery Indefinite Quantity (IDIQ) contract, or as a last resort, a GPC. Through an automated process, FDI issues a purchase order to the OEM who then drop-ships to the specified destination. DHA buyers can connect to the portal from anywhere in the world with their laptop or even a smart phone. FDI would track purchasing data and provide a variety of reports to DHA customers to show purchasing trends, opportunities for reliability improvements, etc. When parts are no longer available from the OEM, FDI can reverse engineer the part using our 4R process. We have a variety of capabilities including additive manufacturing.

The benefits include:

- **Readiness**: Any medical device repair part would be on the system. FDI would collaborate with service and the OEMs to identify every repair part that need to be made available online.
- **Efficiency**: The purchase process using the FDI online store would be incredibly fast and easy (like buying something from Amazon).
- **Availability**: the online portal would be available 24/7/365 for purchases and could even be accessed by a BMET down range with an iPhone.
- **Agility**: provides total flexibility to add, delete, and modify repair part data as needed.
- **Cost Effectiveness**: less than ECAT’s 3.2% cost recovery fee.
- **Data Analytics**: purchasing data can be analyzed for reliability and cost improvement initiatives (e.g., Pareto analysis)
AUGMENTED, VIRTUAL, AND MIXED REALITY (AR/VR/MR) FOR IMPROVED SHIP REPAIR

JEAN-PIERRE BOLAT, CDR, USN (RET)

ARSOME Technology, LLC
jp@arsome.com
+1.203.747.5697

ARSOME develops mixed reality “virtual model” Learning Management Systems (LMS) with continuously more challenging modules presenting learners high resolution 3D-models that will meet the needs advanced 21st century learning and visualization for shipboard or shore technical manuals, maintenance procedures, construction, repair, and various other applications. We envision to support a set of multidiscipline learning modalities by combining Augmented Reality and Virtual Reality to enhance and greatly improve training for casualty or maintenance scenarios. With Augmented and Virtual reality modules, maintainers can better prepare for planned or emergent repair situations. Augmented and Virtual Reality modules can be used in a pre-repair experience, then tested and evaluated through the digital/augmented scenario prior to on-site repairs, maintenance, or casualty evolutions. Further, the data captured from the tracking of performance will inform both the instructor and learners of areas where improvement is required.

In recent discussions with Ship Repair Facility (SRF) personnel, ARSOME is working to develop an opportunity for improved preparation for ship repair evolutions. If SRF personnel are provided with advanced 3D imagery and details of casualty systems prior to a ship’s return to port, they can better identify and more definitively capture the full scope of the required repairs. Additionally, with 3D augmented overlays and exploded views, SRF experts can better identify unique or underreported parts required for the repairs. Furthermore, with the Augmented Reality version of a damaged part overlayed with the Augmented CAD of the original part, further damage can be identified to enhance original shipboard assessment. Additionally, with advanced Augmented Reality or Virtual Reality depiction of the damaged part, SRF maintainers can train and rehearse the repair evolution days or weeks prior to the ship returning to port for the repair. Finally, compartment access issues and logistics requirements can be rehearsed well in advance.

PROBLEM STATEMENT
- As ships pull into port for repairs, SRF maintainers can be surprised by the level of needed repairs that may have been underreported.
- Although reporting procedures are detailed, minute parts, pieces, supplies, or procedures can be missed.
- Challenges arise with ‘just in time’ repair requirements, with either a lack of parts, a lack of expertise, or lack of training.

BENEFITS
- Improved efficiency and training prior to a maintenance evolution.
- SRF crews are better prepared for all maintenance evolutions prior to ship return to port.
- Improved Readiness of combat systems.
- Specific training and expertise acquisition can be done well in advance of complex maintenance or repair evolutions.

TECHNOLOGY SOLUTION
ARSOME’s AR/VR/MR solutions can be tailored to the requirements, needs, and pain points of Navy maintenance, repair, construction, and casualty preparation. Leveraging industry standard equipment, local networks, and/or handheld localized devices, ARSOME’s AR/VR/MR development environment is local to the end user’s secure environment. 3D models are internally developed from captured images that are inputted into the environment.
GOAL-DRIVEN CONDITION-BASED PREDICTIVE MAINTENANCE

CHRISTOPHER L BOWMAN
Data Fusion & Neural Networks, llc.
cbowman@df-nn.com
+1.303.469.9828

Problem: To achieve Condition-Based Maintenance (CBM), both known and unknown abnormal conditions requiring maintenance, need to be detected, characterized, and trusted.

Technology: Off-line, we train neural networks (NNs) to learn the correlated behaviors in the historical system State of Health (SOH) and other relevant data. We cluster these and give default names to similar abnormality detections. We track these automated named detections to determine abnormal events with sufficient persistence and anomalous behavior of interest.

We automatically train categorization NNs for each different event to distinguish each abnormal signature class. We train a trust NN on the historical signatures from each abnormal detection class. We allow the user to create an ontology with his new names for all the abnormal event classes as desired. We find the historical correlations of the historical abnormal events to the overlapping system repair data using Structural Topic Model for textual repair descriptions to integrate with numerical repair logs. We provide visualizations that enable the user to confirm high confidence correlations of abnormal SOH events and/or operator debriefs with recommended repairs based on historical discovered patterns or known models. The neural architectures are automatically adapted while training to be the smallest possible to meet user performance requirements for training.

We apply the NNs to operational online SOH data to detect all the abnormal signatures over time and provide the abnormality signatures to all the categorization NNs. For each declared historical category the corresponding trust NN is run to score how similar the SOH online test signature is to all the SOH signatures that the categorization NN was validated on. If the trust is too low these categorizations will be eliminated. The valid abnormal event categorizations approved by the user will trigger repairs/responses as defined from off-line CBM recommendations. The new abnormality detection signatures will be automatically named and flagged for later operator resolution. The system evolves by following operator goals as to when to retrain, what to retrain on, what to test on, and when to promote on-line.

Status & Testing: The GCPM CBM system described above has been tested on years of C-130 DFDR, Engine Trend, Pilot Debrief, and REMIS repair data from Robins AFB. DF&NN has Certification to Field for Abnormal Catalog Update detection at National Space Defense Center (NSDC) and have installed software at 3rd Space Experimentation Squadron and 3 SOPS at Schriever AFB. We sold licenses to Aerospace Corporation.

Benefits:
1. Affordable & reliable tailoring of the NNs solution and robustness
2. Finds the unknown unknowns in big data
3. Provides a trust score for operational categorizations
4. User does not need to label the classes
5. Reduced maintenance costs
6. Increased system availability
7. Improved performance as system evolves

Looking for new applications.

PROBLEM STATEMENT

- Unknown anomalies in word recognition rate machines are not being detected and characterized since only Deep Multi-Start Residual Training neural networks have been proven to find these.
- Unknown abnormal power behavior using ARL Autonomous Real-time Electric-/Magnetic-field Integrated Sensor (ARTEMIS) are not currently detected.

BENEFITS

- Unknown abnormal precursor detection/characterization enables reduced cost Condition-Based Maintenance in an evolving automatically retrained system to meet goals.
- The GCPM anomalies provide inputs to QSI’s TEAMS® models that capture system-agnostic functional failure cause and effect dependency relationships.
- ROI is about tenfold in slightly more than 2 years due prevention of CNC machine breakdowns and reduced material wastage

PROCESS/TECHNOLOGY SOLUTION

The goal is to develop intelligent system tools that learn normal patterns of life from energy consumption auditing of both cyber and manufacturing devices in manufacturing systems and use a hybrid machine-learning (ML) and a digital-twin (DT) approach to learn and correlate changed patterns from physical and cyber threats to Computer Numerical Control (CNC) machines. This work is being done for AFSC Energy Consumption Abnormality Detection SBIR Phase II.
Current US Marine Corps (USMC) logistics information systems do not possess predictive modeling and simulation tools required for strategic mission-critical Marine Air-Ground Task Force planning efforts. While the USMC incorporates data-driven techniques to evaluate maintenance efficiency, equipment performance, and unit readiness, there are no tools available to forecast operational readiness and future sustainment needs.

Through combining existing operating and maintenance data with novel machine learning methods, we have developed mission-driven material mobilization and scenario planning technology. This technology can predict asset availability, fleet readiness posture, and unit sustainment needs (including maintenance efforts, spare parts, and associated costs). It enables the following core capabilities that maximize readiness while minimizing costs:

- **Predictive Maintenance**: Consolidated data records for each asset, coupled with new machine learning methods, provide recommendations for maintenance, including expected spare parts requirements.
 - **Asset Lifecycle Planning**: Maintainers can easily access an asset’s operating history to verify and justify asset selections for depot maintenance and overhaul.
 - **Block Building & Parts Fulfillment**: Supply officers can model and simulate spare parts requirements and sustainment costs based on actual operational demands and deployment scenarios.
 - **Readiness Forecasting**: Commanders can forecast unit readiness to determine which assets are most likely to be available in the future and provide material cost estimates for sustaining readiness levels.
 - **Mobilization Planning**: Equipment can be rank ordered by failure probability to select the most operationally reliable assets for deployment.

The technology was developed alongside the warfighter through SBIR Phase I & II projects and is currently at a technical readiness level of 6. Development was focused on the LAV and MTVR asset classes and included four distinct phases:

- **Definition of technical requirements via 60+ user workshops**
- **Design and prototyping of capabilities that serve three functional groups (command, maintenance, supply)**
- **Training and validation of over 1,000 machine learning models with the best performing models producing financial forecasts within 1% error**
- **Deployment of the technology in a FedRAMP compliant AWS GovCloud environment**

Tagup is working with the USMC to transition the technology to a Phase III effort. Next steps include thoroughly testing the technology in operational use and expanding to additional asset classes.
AI ASSISTED DATA ENTRY FOR AIRCRAFT MAINTAINERS

JAMES HILL
Aging Aircraft Solutions
james.hill@agingaircraft.us
+1.478.225.4044

Aircraft maintenance data entry is inefficient, time consuming for maintainers, resulting in inaccurate or incomplete maintenance data. Analysis has shown that as much as 30% of Air Force maintenance data has inaccurate work unit codes.

Inaccurate or incomplete maintenance data results in degraded ability to run actionable analytics and reports to keep aircraft fully mission capable in the field.

Sustainment, lifecycle management and engineering functions performed by Air Force Lifecycle Management Center (AFLCMC) require accurate and standardized information to be effective.

The solution is an artificial intelligence assisted data entry technology that helps maintainers quickly and accurately find the best work unit code, action taken and how mal codes during data entry.

The solution leverages natural language processing to understand what the maintainers are working on and interpret discrepancy narratives, include understanding acronyms shorthand and slang not found in the technical data.

Benefits:
- Reduces time spent by maintainers on data entry; increases time spent performing maintenance
- Increases first time quality / data accuracy
- Upskills inexperienced maintainers
- Reduces re-work/corrections caused by errors in data – supervisor and maintainer time savings
- Reduces need and cost of data cleansing prior to analysis
- Increases analytical accuracy and quality of decisions
- Increases the ability of field units to understand what maintenance and non-mission-capable drivers are
- Increases ability of the sustainment enterprise to keep aircraft sustained and mission capable

TECHNOLOGY SOLUTION
The solution is an artificial intelligence assisted data entry technology that helps maintainers quickly and accurately find the best work unit code, action taken and how mal codes during data entry.

The solution leverages natural language processing to understand what the maintainers are working on and interpret discrepancy narratives, include understanding acronyms shorthand and slang not found in the technical data.
CBM+ AS A CATALYST TO PROCESS IMPROVEMENT

BRENT MOON

3d Marine Logistics Group (3d MLG), USMC//Booz|Allen|Hamilton
brent.moon@usmc.mil
+1.804.279.4251

Problem: 3d Marine Logistics Group (3d MLG) has a two-part problem for ground motor transportation (MT) assets. On the average, these assets spend 60 days in shop for corrective maintenance (CM). Additionally, the preventative maintenance (PM) requirements of the fleet is $1M and 15K man-hours.

Description: In 2018 we knew CBM+ was the solution to our maintenance problem. However, we were not clear how to proceed within the 3 facets of people, process, and technology. Out of the 2019 Maintenance Symposium we realized our epiphany moment when the keynote speaker made the following 2 statements: 1) Good technology overlaid on bad, unrefined, and unimproved processes results in bad technology. 2) Relying on the addition of manpower, funds, or structure is unsustainable. These two statements shape our CBM+ solution focusing on changing our processes and empower our people thereby ensuring the effectiveness of the forthcoming enterprise CBM+ technology solution. Applying these concepts to CM, we eliminated administrative non-value-added business steps not directly contributing to the restoration of the asset. Moreover, a system of standardization of work centers, workspace ownership, quality assurance, and minimizing physical movement has been implemented to increase efficiency. In the area of PM, a side-by-side comparison between the owner/operator monthly service checks were found to be more in-depth compared to the annual PM. Strictly enforcing the owner/operator annual monthly service checks had enabled us to remove the redundant tasks found on the annual PM resulting in a reduction of man hours. Furthering the concept, interval and time-based PM material replacements were changed to condition-based replacement resulting in a reduction of material cost. The totality of the process changes have enabled no cost, immediate positive effects in the morale of the owner/operators/mechanics and improved tactical level equipment availability.

Current: As of this submission, we have fully implemented CM/PM process changes in ground motor transport assets. Additionally, we codified these changes in directives, maintenance standard operating procedures, obtained a service level process waiver, developed, and delivered training to 600+ personnel, and perform formalized CBM+ compliance inspections.

Data: Our initial baseline data for CM of 60 days in shop compared to the improved CBM+ process data of 19 days in shop have indicated we have reduced the days in shop by 41 days, a 60% improvement. Similarly, our initial baseline data for PM $1M and 15K man-hours, as required by the technical manuals has improved to $200K (80% reduction in material cost) 1K man-hours (90% reduction time effort).

Next Steps: Expand to Engineer equipment including both Heavy and Utilities equipment, scale up to the service level component adopting the process changes into policy, and empower individuals to think about maintenance in a condition-based context.
Our solution reduces equipment failure-related downtime in manufacturing facilities and maintenance depots by as much as 20%, by reducing the cycle time of maintenance procedures and improving awareness and readiness for equipment faults. The technology behind this solution is sponsored by the U.S. Department of Energy’s Advanced Manufacturing Office due to its promise in hard-technology applications. Maintenance technicians within these facilities spend almost 40-60% of their time exclusively on identifying and finding the root cause of equipment failure. Once equipment faults are identified they can usually be fixed very quickly, but while the problem is being identified the rest of the production line will likely be completely stopped until the issue is resolved.

Our solution to this problem is a drop-in rack-mounted module that connects to local industrial control systems within the facility. This module learns normal behavior and uses these learnings to both identify equipment failure as soon as it starts happening and interactively provide insights to maintenance technicians on what pieces of equipment are actually at fault. Our module does this without any sort of cloud connection – all data is kept on-device, ensuring safe and secure analytics without introducing any additional cybersecurity vulnerabilities. This approach enables enhanced situational awareness within DoD facilities and equipment – the module can catch anomalies for which it has not been trained, identifying equipment failure even if it has never happened before. The technology is currently at TRL 6, with multiple feasibility studies and real-world demonstrations having taken place.

In a simulated valve fault scenario, the platform is able to immediately identify a valve fail-open and is able to pick out the signals best informing operators on which valve failed as well as supporting data indicating the valve failure. A facility technician would be able to immediately and quickly secure the necessary materials to repair the valve without having to perform non-relevant maintenance checks on other non-faulting systems. The platform reduces an hour-long maintenance procedure to roughly 10 minutes – we expect this benefit to translate directly to other faults within production facilities.

The overall benefit will be a significant reduction in the time it takes to detect and resolve equipment faults through analytics that do not require cloud connectivity, improving the effectiveness and security of the DoD logistics enterprise and ultimately improving weapons platforms availability.

Next steps for this platform is securing Interim Authorization to Test (IATT) for this platform within DoD production systems, proving that we improve the operational uptime of production facilities and maintenance depots. We also have an ongoing collaboration with the Georgia Institute of Technology’s Advanced Manufacturing Pilot Facility to perform pilot studies within their testbeds.

PROBLEM STATEMENT

Equipment failure within production manufacturing & maintenance systems causes significant downtime and delays, reducing the availability of weapons platforms by as much as 6%. As much as 40-60% of the time spent fixing these failures is just spent finding the root cause of the issue. Predictive maintenance can reduce this downtime, but existing approaches are all cloud-based, exposing undue security risks. It is also difficult and expensive to retrain production personnel with machine learning experience – something cloud-based solutions often require, as they assume the customer implements the model themselves. Finally, these solutions usually ask for a host of new sensors to be installed – vibration, temperature, etc. – which require extensive personnel time to install, especially for custom equipment.

BENEFITS

- Reduce the time maintenance personnel spend finding and fixing the root cause of equipment issues
- Reduce the time DoD production lines spend in a stopped state as they wait for equipment issues to be found and fixed (as much as 20%)
- Identify potential issues early and point them out to operators, before the equipment breaks
- Reduce the cognitive load on maintenance personnel, allowing them to more rapidly and effectively assess field conditions and status of their equipment
- Enable analytics in production without compromising cybersecurity policies, without requiring personnel retraining, and without reorganizing your entire infrastructure

TECHNOLOGY SOLUTION

The solution is our zero-cloud monitoring and analytics solution for industrial control systems. Our ZAPIM platform is a single module that is deployed on-rack alongside existing controls hardware. Technicians only need to spend a total of 15 minutes configuring and deploying our solution, “setting and forgetting” it afterwards. When an issue is detected, the platform both alerts operators and interactively works with them to identify the root cause. Our platform does this with zero connection to the outside world – all data is kept entirely-on device, removing cybersecurity concerns. The platform is also continuously self-improving – operators can interactively update the platform in response to changing field conditions, enabling it to provide better insights relevant to on-the-ground conditions.

Platform has autonomously shown the top three signals corresponding to a failed-open valve – the technician quickly assesses likely cause and goes to fix that part of the system, saving time and reducing unnecessary maintenance checks.
Detection of ground faults and other electrical problems is typically diagnosed by manual detection (e.g., using an insulation resistance tester) and localized by manual inspection for insulation breakdown. Alternatively, other solutions may install intrusive electrical monitoring systems that may not be suitable for all equipment.

AURA has developed GroundFaultInsight™, an intelligent and portable device to non-intrusively detect and locate electrical ground faults in real time. GroundFaultInsight™ can sample electrical data (including current and voltage) at high sampling rates, and it contains AI/ML algorithms that can diagnose and prognose electrical faults.

The benefit of this solution is to rapidly and non-intrusively detect ground faults in continuously powered subsystems, allowing instantaneous detection of electrical problems. The solution augments high-precision, high-bandwidth low-voltage and current instrumentation with AI/ML algorithms to detect and locate ground faults in real-time.

PROBLEM STATEMENT

Detection of ground faults and other electrical problems is typically diagnosed by manual detection (e.g., using an insulation resistance tester) and localized by manual inspection for insulation breakdown. Alternatively, other solutions may install intrusive electrical monitoring systems that may not be suitable for all equipment.

BENEFITS

The benefit of this solution is to rapidly and non-intrusively detect ground faults in continuously powered subsystems, allowing instantaneous detection of electrical problems. The solution augments high-precision, high-bandwidth low-voltage and current instrumentation with AI/ML algorithms to detect and locate ground faults in real-time.

TECHNOLOGY SOLUTION

AURA has developed GroundFaultInsight™, an intelligent and portable device to non-intrusively detect and locate electrical ground faults in real time. GroundFaultInsight can sample electrical data (including current and voltage) at high sampling rates, and it contains AI/ML algorithms that can diagnose and prognose electrical faults.

Our solution has already undergone lab testing and is ready for transition to another application, as well as ruggedization.
MINI-MUX HIGH DENSITY ELECTRICAL SWITCHING

CHRISTOPHER THOMAS TEAL

Eclypse International
CTEAL@ECLYPSE.ORG
+1.951.317.0781

Problem: Advanced Automatic Wiring Test Sets (AWTS) were deployed to Joint Service maintenance activities in FY 2010 in order to accurately and rapidly test and inspect Electrical Wiring Interconnect Systems (EWIS). Success was immediately obtained at Intermediate and Depot level. O-Level maintenance activities are requesting this capability be brought forward so that it can be implemented at O-Level electrical maintenance and troubleshooting continues to be not only reactionary, but also a slow, manual, and tedious process - Expending man-hours and $$. O-Level Maintenance requires small footprint. Reduced Mission Readiness is the current outcome.

Solution: New electrical test capability has been miniaturized to greatly reduce footprint for Test Interface Cables used to test avionics chassis. Based on the current use of the deployed technology known as the Automatic Wire Test Set (AWTS), our team will focus on efforts to reduce its overall deployment footprint for use at O-Level. Miniaturization of aircraft testing equipment accomplished by the integration and use of solid state switching in small, distributed modules. The Test Adapter Cable management will reduce further footprint and ensure the delivered capability retains the ability to aid in rapid fault resolution related to intermittent faults and the occurrence of Re-Test Okay (RETOK) events.

Benefits: Uses existing government logistically supported proven software and hardware - Joint Services tester knows as AWTS. Utilizes precise measurements that detect very hard to find electrical issues. Locates true root cause of faults. The field does not currently possess this capability. Will provide 75% or greater reduction in deployed footprint vs typical fielded testers. Test turnaround times at O-Level will be reduced resulting in increased Mission Readiness!
AI MACHINE LEARNING AND KNOWLEDGE AUTOMATION FOR SMART MAINTENANCE

SHENG-CHUAN WU

Franz Inc.
scw@franz.com
+1.510.452.2000

The problem: As machines become more complex, so does their maintenance and the knowledge required to perform the tasks effectively. We want to fix any problems with the equipment correctly the first time with the least amount of time and money. Better yet, we want to do preventive maintenance guided by analyses of past maintenance records, so that problems do not happen. An effective maintenance program directly impacts our war fighting readiness, besides mitigating the costs and resources associated with ineffective maintenance processes. Unfortunately, most of the machine knowledge and maintenance data needed to achieve the above objectives are stored as natural language texts in either structured databases or semi-structured documents, or in the heads of experienced engineering staff. Such knowledge is difficult to search and apply and to share, let alone to automate. The tacit knowledge in the heads of experienced staff are typical knowledge silos, gone with the staff eventually.

The technology: There has been significant progress in Natural Language Processing (NLP) and Semantic Knowledge Graph technology. A rule-based NLP system is able to normalize and reduce text sentences, and to extract key entities based on a domain ontology with the aid of fuzzy matching and semantic disambiguation. Pattern rules are employed to extract relationships between entities, which are stored as subject-predicate-object triples in the Knowledge Graph database. A new autoregressive language model with deep learning helps generate such rules with significantly less human authoring. This NLP process can be applied to the textual descriptions in the maintenance database as well as technical manuals and notes, making the information computable beyond simple keyword search. Such maintenance knowledge enables knowledge automation, statistical analysis and pattern discovery for corrective, preventive, and predictive maintenance.

The current development status: The Knowledge Graph technology is in production currently. The NLP process is being tested with FAA Service Difficulty Reports of aircraft maintenance, showing great promise.

PROBLEM STATEMENT

- Machines are getting more and more complex; so are their maintenance and the knowledge required to do it right
- Ideally, we want to do corrective, preventive and predictive maintenance deliberately. However, the knowledge and data needed for such works are stored in natural language texts in databases and documents, difficult to query and apply
- Lots of tacit knowledge in the heads of experienced staff cannot be easily shared with junior staff or across services
- Ineffective maintenance processes cost money, resources, and war fighting readiness

BENEFITS

- Maintenance knowledge graphs enable knowledge automation, statistical analysis and pattern discovery for corrective, preventive and predictive maintenance, resulting in better equipment readiness with less costs and resources
- Knowledge graphs facilitate retaining of practical experience and new knowledge learned continuously and in perpetuity
- Knowledge graphs in a cloud allow sharing of maintenance know-how across service branches globally and DLA
- The proposed maintenance innovation is equally applicable for commercial industries, leveraging the synergy between defense and commercial sectors

TECHNOLOGY SOLUTION

- Use a rule-based Natural Language Process (NLP) to normalize and reduce text sentences in technical manuals and maintenance records, from which to extract key entities
- Use fuzzy match and semantic disambiguation to unify different terms for the same entities
- Use pattern rules to extract relationships between entities, which are then transformed to RDF triples in semantic Knowledge Graph databases
- Use a new autoregressive language model with deep learning to help generate the above rules with minimal human authoring

Graphic or Image

Test/simulation data supporting performance claims: The semantic Knowledge Graph database technology has been deployed at various customer sites. For example, we support mission-critical applications such as the Essilor Supply Chain Management system which handles 100,000 concurrent queries per minute during peak hours. The NLP technology has been proven effective in extracting knowledge from production call logs, greatly improving the effectiveness at support call centers.

Next steps/potential benefits: The proposed Smart Maintenance system can potentially be deployed to every military branch and DLA, which all need an effective maintenance program to upkeep their equipment. Such a system is also very useful for commercial industries. Franz needs additional funding and most importantly a target DoD user to help productize the technology.
Paint & Blast operations (aka “Coatings operations”) constitute critical pieces of the vehicle maintenance process at Marine Corps Logistics Command’s (MARCORLOGCOM) Albany Marine Depot Maintenance Command (MDMC). These operations are often complicated by issues related to highly variable preparation & paint times for parts, travel times between distant Coatings stations, paint booth downtimes, personnel scheduling challenges, & downstream prioritization of required painted parts. Delays or poor scheduling of jobs in Coatings can result in significantly increased vehicle maintenance cycle times, which in turn can compromise combat readiness.

MDMC & Georgia Tech Research Institute have partnered through the University Affiliated Research Center (UARC) to develop a toolkit of statistical analysis, computer simulation, mathematical optimization, & traditional industrial engineering (IE) techniques to improve current & future Coatings operations. The development of this unique toolkit is underway, & the following notable successes are now in place:

1. A tug & tow train system plan to improve movement between stations in Coatings. Traditional IE analysis reveals that the new train system has the potential to reduce part travel times by > 80% between stations & can reduce forklift wear & personnel cost significantly.

2. A computer simulation model of Coatings operations that has been used to determine maximum production capacities under certain paint booth & personnel constraints, leading to better planning & more efficient use of resources.

3. A personnel scheduling tool that responds to day-to-day production needs, allowing for efficient use of manpower & cost savings.

In addition to the near-term development that has successfully been implemented as described above, MDMC anticipates a number of mid-term achievements as well, including consolidation of the toolkit components into a one-stop-shopping synergistic tool (vice individual applications) that can link up with related inventory, scheduling, & tools that we have developed (or are developing) in non-Coatings contexts.

MDMC is positioning itself to optimize upcoming operations for a new building devoted to Coatings that will come online in the middle of the next decade. This long-term building project will necessitate: the demolition of the existing Small Paint building, re-modeling of current blast operations buildings, new robots to accomplish paint / de-paint operations, & robot system operator training & set up of robotics systems.

The anticipated benefits of this work are tremendous: reduced vehicle cycle times; increased efficiencies in terms of labor & machines; & reduced environmental pollutants as the result of transitioning from particulate-based blasting to the use of robots. Moreover, the generic applications of the Coatings toolkit will allow for migration to other MDMC plant opportunities and could be incorporated throughout the DoD.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Paint & Blast (“Coatings”) operations constitute critical pieces of the vehicle maintenance process at MDMC.</td>
<td>* Near-term: Train system in Coatings will reduce travel times by as much as 80% and will increase throughput in the steam operations by as much as 60%. System will also result in significant reduction in forklift wear. Computer simulation tool has shown that Small Paint has not hit capacity limits.</td>
</tr>
<tr>
<td>* Operations are often complicated by:</td>
<td>* Mid-term: Toolkit will allow for optimal job and personnel scheduling to account for personnel and machine availability as well as downstream prioritization of required painted parts. Work will help to reduce vehicle cycle times.</td>
</tr>
<tr>
<td>- Highly variable preparation and paint times for parts</td>
<td>* Long-term: Fully functional toolkit will be ready for eventual new Coatings building, and will optimize part movement, machine use (including robots), personnel scheduling, and environmental concerns (e.g., by using scheduling robot use instead of particulates for blasting).</td>
</tr>
<tr>
<td>- Travel times between distant Coatings stations</td>
<td></td>
</tr>
<tr>
<td>- Paint booth downtimes (planned or unplanned)</td>
<td></td>
</tr>
<tr>
<td>- Personnel scheduling challenges</td>
<td></td>
</tr>
<tr>
<td>- Downstream prioritization of required painted parts.</td>
<td></td>
</tr>
<tr>
<td>- Delays or poor scheduling of jobs in Coatings can result in:</td>
<td></td>
</tr>
<tr>
<td>- Unnecessary costs</td>
<td></td>
</tr>
<tr>
<td>- Significantly increased vehicle maintenance cycle times coming out of MDMC</td>
<td></td>
</tr>
<tr>
<td>- Reduced combat readiness.</td>
<td></td>
</tr>
</tbody>
</table>

TECHNOLOGY SOLUTION

We will develop a toolkit of statistical analysis, computer simulation, optimization, and traditional industrial engineering techniques to improve Coatings operations at MDMC.

* Near-term: Implement / enhance a tug and tow train system plan to improve movement between stations in Coatings.
* Mid-term: Consolidate of the toolkit components into a “one-stop-shopping”, synergistic tool that can link up with related inventory, scheduling, and tools we have already developed.
* Long-term: Continued improvement of and then integration of our technology with new Coatings building scheduled for the middle of the next decade.

Various preliminary related projects have been completed in recent months, including a Small Paint personnel scheduler and a working train system in Coatings.

A Powerful Toolkit

Simulation, Scheduling, and Industrial Engineering Toolkit components
Apellix specializes in precision flight control that allows uncrewed aerial vehicles (UAVs) to function as industrial tools for complete corrosion management of the built environment. Our tethered and untethered computer-controlled aircraft have flight control within +/-3cm, allowing our aircraft to perform observational inspections, contact-based inspections, pressure cleaning, and airless coating of elevated structures. Many elevated structures are difficult to access and exist in environments that expose the fabric and surfaces to salt, moisture, and factors that can reduce the effectiveness and longevity of protective coatings. The accumulation of mold, salt and other contaminants can further reduce the lifespan of the coating as well as create aesthetic issues. Also, in some instances a small defect or damage can sometimes impair a coating’s protective ability and allow for accelerated localized corrosion well in advance paint failure in other areas of the structure.

The proposed Aerial Spot Repair System for Inspection, Surface Preparation, and Painting works as follows:

1. **Identify Corrosion.** We currently provide commercial services in oil & gas facilities including close visual inspection (CVI) and contact-based paint thickness (dry film thickness or DFT) and wall thickness of the underlying steel (ultrasonic UT). Our computer vision solution would quickly identify areas of interest.

2. **Clean and Remove Corrosion.** Our current systems can complete SSPC-SP 1 Solvent Cleaning and come close to SSPC-SP 7 / NACE No. 4 Brush-off Blast Cleaning standards.

3. **Apply Coating.** Apellix is operating under a joint development agreement with AkzoNobel (International Paints) to develop and commercialize our autonomous spray-painting drone for maritime and protective coatings.

4. **Evaluate Job Quality.** – When possible, our existing systems for CVI and measuring contact-based DFT thickness will be utilized for post-job evaluations.

The Apellix mission is to provide industry solutions to address all phases of corrosion management and the proposed aerial robotic spot repair system builds upon our currently developed systems for mapping and inspection, surface preparation, and painting.

Apellix has designed and built our aerial robotic system to operate at heights of up to 150’ while handling the weight of hoses, coatings, cleaning materials, components, and sprayers. This allows the system to keep reservoirs and pumps on the ground, connected to the aircraft via a tether. The aircraft operates with ground power (single phase 240vac at 50A) via tether with a battery backup, eliminating the need to land and swap batteries.

The most important working principles of our technology, and effectively the heart of our solution, is our precision flight control software. We look forward to additional questions about our current capabilities and requirements to mature the technology.

PROBLEM STATEMENT

- Many elevated structures are difficult to access and exist in environments that expose them to environmental factors that can reduce the effectiveness and longevity of protective coatings. The accumulation of mold, salt and other contaminants and exposure to the environment can cause localized corrosion and potential failures in the coatings protecting the underlying structure. These issues can also reduce the lifespan of the coating as well as create aesthetic issues. A small defect or damage can sometimes impair a coating’s protective ability and allow for accelerated localized corrosion well in advance paint failure in other areas of the structure.

TECHNOLOGY SOLUTION

- We propose an aerial spot repair system for inspection, testing, cleaning, surface preparation, and painting. The aerial robotic system will be capable of performing 1) visual inspection and contact-based non-destructive testing 2) chemical washing and limited spot blasting, and 3) limited application of protective coating. Should the system detect an area requiring repair of the coating it would be capable of limited blasting to close to NACE No. 4/SSPC-SP 7, then coating the repaired area with a protective coating such as Interzone 954 from International Paints or specialty coatings designed to encapsulate and stop corrosion. Components of this system are lab-scale tested TRL 7 (measurement) and pilot-scale tested TRL 8 (surface prep) with the final product using technology that has been under development for years.

BENEFITS

- Cleaning, surface prep, and painting infrastructure such as storage tanks, ships, architectural structures, and their associated supporting infrastructure is costly and dangerous and sometimes requires the asset be taken out of service. An aerial spot repair system for inspection, testing, cleaning, surface preparation, and painting will save millions of dollars, reduce risk to workers, and enable more sustainable operations of the assets. Further, as a digital worker the system can create a fully auditable data record. This tool is needed for the ongoing war on corrosion.

GRAPHIC

![Graphic of aerial spot repair system]

Estimates are that direct and indirect costs of corrosion are 6% of the US GDP, and safety benefits could be substantial as falls are a leading cause of workplace deaths.
Concrete is used extensively in the approximately 550,000 DOD facilities worldwide. The DOD spends approximately $10 billion annually on facility maintenance. Between 2015-2016 the number of DOD facilities that received a failing grade went from 7% to 18.9%. The Hybrid Building System (HBS) is an improved concrete system that can provide a more environmentally friendly concrete with the ability to tailor the properties to the specific project needs, reducing concrete, steel, and energy requirements while at the same time making significant increases in resiliency as compared to traditional concrete.

The HBS combines several existing commercial technologies into a unique process that addresses the issues with current commercial concrete. The HBS’s enhanced properties result from the addition of one of today’s super materials, Graphene. Numerous tests have shown that the addition of Graphene in concrete and many coatings can increase strength, electrical conductivity, improve resistance to water penetration, biological growth, and thermal conductivity. With the recent development of a high volume, low cost, manufacturing process, Graphene is now commercially economical for large projects. In addition, the HBS formulation can be tailored to provide properties to support specific project needs.

The first step in the HBS process is to prepare the structural element (assuming that the project requires it) for encapsulation by removing the chlorides, oxides, surface corrosion, etc. using an environmentally friendly Laser Ablation (LA) system to vaporize the contaminants. By eliminating the surface contaminants, the encapsulating coating can’t be attacked from the inside, eliminating one of the primary failure mechanisms of structural elements used in traditional reinforced concrete.

The second step of the HBS process is to apply a specially selected “Graphene Enhanced” coating to the structural element. The coating will keep moisture from contacting the structural element, thereby eliminating the initiation of corrosion. A U.S. Navy study concluded that in addition to improved coating adhesion, LA cleaned and painted test specimens had significantly improved corrosion resistance as compared to non-LA test specimens.

The third step of the HBS process is to enhance the concrete with Graphene, which is combined with the coated structural element following standard commercial concrete processes. A fourth step can be added by applying a specially selected “Graphene Enhanced” coating to the outside.

HBS provides increased strength, water resistance, and resiliency the HBS formulation can be modified further with the addition of a commercially available “Cellular Foaming Agent” that can provide a significant increase in the thermal resistance with a corresponding weight reduction. The LA, Graphene manufacturing and cellular foaming agents are all commercially available. Preliminary testing has verified improvements, optimization is now required.

PROBLEM STATEMENT
- U.S. DOD spends roughly $10 billion annually on their ~550,000 facilities maintenance with an additional ~$140 billion in unfunded maintenance issues
- Concrete building products are affected by natures elements such as carbon dioxide causing carbonation that reduce concrete ph, which over time negatively impacts the structural steel
- The Structural steel used in current concrete building systems is contaminated resulting in corrosion starting from the inside
- Corroded structural steel expands 2-3 times over non-corroded steel, creating stresses, causing cracks and rapid deterioration
- DOD facility maintenance failing grades increased from 7% to 18.9% between 2015-2016
- Traditional concrete has almost no insulating capability requiring significant costs to insulate increasing construction costs
- Concrete contributes ~8% to Global CO2 emissions

BENEFITS
- The HBS combines several existing commercial technologies into a unique process that addresses corrosion, water penetration, thermal resistance for reduced project MRO costs
- Eliminating surface contaminants from the structural element removes one of the primary reinforced concrete failure mechanisms
- Applying a Graphene Enhanced coating to the structural element further reduces the initiation of corrosion
- Graphene enhanced concrete has shown to increase strength, water penetration, thermal and biological growth resistance, etc.
- HBS provides the ability to tailor properties to address specific project needs providing additional savings besides annual MOR costs in concrete, steel and energy required during construction
- Improving the warfighter and their families living, schooling and training facilities provides a more solid foundation for success

TECHNOLOGY SOLUTION
- HBS is a 3 or 4 step process depending on the specific project application
- The first step is to use an environmentally friendly, DOD and FAA approved, laser ablation system to eliminate any external contaminants on the structural element
- The second step is to apply a “Graphene Enhanced” Nano-coating to the structural element to reduce corrosion initiation
- The third step is to encase the structural element in a Graphene enhanced Nano-concrete that improves concrete strength, water penetration and thermal resistance, electrical conductivity and can tailor properties to specific project needs
- The fourth (and an optional step) is to apply a Graphene enhanced Nano-coating system to the exposed surfaces of the concrete for even further reductions in annual MRO costs
- Applicable for traditional or 3D printing construction projects

Graphic or Image
The Surface Treatment System (STS) is an evolutionary approach to providing a nearly impervious protective layer for virtually all metallic hardware in the U.S. Military inventory. Whether applying STS to gas turbine compressor airfoils to address fouling, anti-corrosion or a host of other hardware readiness related issues, STS’s “once and done” process will contribute to significant savings, as well as allow more time for our war fighters to spend developing their skills, instead of conducting repetitive maintenance related activities.

STS is a unique three step system that has been specifically developed to address many of the limitations of current protective coatings. STS’s three step system consists of an FAA approved Laser Ablation (LA) system to clean the hardware surface from any contamination such as oxides, chlorides, etc. that remain from the manufacturing and post manufacturing processes. Removal of the surface contaminants will eliminate any possibility of a chemical attack from the surface outward. The U.S. Navy conducted a study in 2013, and concluded, that LA surface outward. The U.S. Navy conducted a study in 2013, and concluded, that LA has approved the use of LA for the removal of corrosion, paint as well as numerous other materials from the Aluminum and Steel structures of their surface fleets.

The next step in the STS application process is to address hardware surface finish irregularities. This is particularly important due to the extremely thin “Diamond Like Carbon” (DLC) protective outer layer. The thickness of the DLC outer layer is important for a number of reasons. One reason is that the hardware undergoing the STS process is typically finished hardware. Therefore, the fit, form and function of the component can’t be affected. This includes the surface finishing process, which also must not result in loss of any parent material, nor re-contamination of the cleaned surface. Since the thickness of the DLC coating is only 4 microns, and well within manufacturing tolerances, this is not an issue.

The original DLC coating has been proven to be extremely durable. During the early phase of the Iraq war, the F18 IR targeting pods were being damaged due to sand impact. After the application of the DLC coating, this issue was eliminated. In addition, over 100,000 F-22 lens have also been successfully coated.

The DLC used in the STS process was modified to include a bond coat specifically tailored to improve adhesion to metallic surfaces.

DLC is applied using an economical, commercially available, Plasma Enhanced Chemical Vapor Deposition (PECVD) process. The same process is used to apply thin coatings to many everyday items such as doorknobs, etc. DLC has also been successfully tested in the casting industry on core tooling.

STS is currently at TRL 5.
NextGen Aeronautics (NextGen) developed non-weld repair of cracking in HH/UHH steel and 5000-series Al vehicle armor components that (1) arrests further growth of the component crack(s); (2) restores and maintains ballistic performance and structural capabilities of the armor component to the maximum extent possible; and (3) is durable over the vehicle depot-level scheduled repair/maintenance, with robust performance over full range of vehicle usage, operations, and environments. The non-weld repair procedures developed by NextGen are compatible with depot and temporary tools/equipment and mechanic-technician workforce skillset allowing for accelerated implementation of composite patch armor crack repair procedures.

HH and UHH steel and 5000-series Al armors on USMC, USA, USAF, and other DoD vehicles experience significant cracking in operation. Cracking reduces ballistic and structural performance that are critical safety and readiness concerns. The current repair solution uses welding processes to fill and repair the cracks. Resulting high weld temperatures alter the metallurgy and introduce residual stresses that lead to subsequent crack initiation and growth.

NextGen developed composite patch-repair process that arrests crack growth and restores ballistic and structural performance. Lower patch curing temperatures do not alter metallurgy or introduce residual stresses. They are implemented on one-side of the armor, not requiring removal of the spall line. Composite patch-repair capabilities are demonstrated to USMC by extensive testing and analysis.

Technology is based on one used for decades to repair cracks in military and commercial aircraft. Unlike weld-repair, patch repair does not alter armor metallurgy or introduce residual stresses that can initiate new cracks in the post-repair armor and show recovery of ballistic V50 and structural properties of the armor. It can be used in most crack-repair scenarios where weld-repairs are currently performed. Repair minimally requires only two-days of training for a technician to be able to perform patch repairs.

Testing performed by NextGen demonstrated that Cracked-Armor Laminated Patch Repair (CALPAR) restore ballistic performance (V50) to uncracked levels. It recovers structural performance (stiffness, strength, fatigue) to operationally acceptable levels. Repair remains effective and durable under vehicle operational environments (temperature, humidity, salt-water). NextGen can provide CALPAR Repair Kits (CARK) for permanent repair when performed at depot-level facility using trained technicians and temporary repair when performed at field-level facility using minimally trained technicians.
Problem Statement
Aircraft carrier flight decks face two problems: 1) They cannot withstand MV-22 or F-35B vertical take-off and landings because the heat weakens the surface, which limits flight deck operations; 2) The decks are covered with a coarse “non-skid” product to provide traction, but this breaks down during aircraft arresting hook landings, and from leakage of oil, fuel, and hydraulic fluids.

Description of the Technology
Carbon Dots (CDs) are non-toxic and ecologically safe. The diamond-like carbon quantum dots variety have high external surface areas that allow for immense heat dissipation. When combined to make carbonized polymer dots, the composite can be applied as a surface sealant/coating, giving pavement/concrete certain diamond-like characteristics. The composite can be applied with electrostatic sprayers or high-volume, low-pressure compression systems. This approach enables immense heat dissipation from flight-capable ship decks and can mitigate shipboard fires caused by chemical hazards on deck or below.

The Current Development Status
With its nontraditional partner, Wagner Star Industries, HII tested a new production method yielding a near 1:1 carbon-to-CDs conversion ratio, which is significantly higher than other conventional processes currently in the CD market. The carbon conversion process is currently at technology readiness level (TRL) 4; it is repeatable and scalable.

Test/Simulation Data Supporting Performance Claims
Repeated tests captured on video show that when an amplified laser is pulsed at carbon dot powder and wafers, the exposed temperature fluctuates and dissipates rapidly. This outcome is similarly seen in carbon black from tires (a source of CDs) that avoid electrostatic charging and help conduct heat away from hot spots, like in the tread and belt areas. This reduces thermal damage to the tire and extends its lifespan. Likewise, carbonized polymer dot coating/sealants prototypes indicate fire-proofing qualities. For concrete/pavement repairs, prototypes were pliable upon application, then over time strengthened and hardened, demonstrating how CDs strengthen while exposed to extreme heat.

Next Steps/Potential Benefits
Vertical thrusters can reach 10,000°F causing damage to the deck. The CD composite can allow 75% of the V-22 or F-35 takeoffs to be vertical (typically 100% of launches are horizontal), while mitigating heat damage; and simultaneously permitting horizontal launches. The technical applications can be extended throughout ship infrastructure, while also having a cross-application use for firefighting from chemical or non-chemical hazards. Additionally, spray applications can safely smother fires if damaged planes land, saving lives/manpower, while skid-resistant properties can further prevent damage to the deck.
Problem Statement
Lithium and conventional batteries are ubiquitous but pose significant hazards due to their highly explosive/corrosive nature and carcinogenic qualities. Unfortunately, few technically equivalent, low-cost, safe, mass-producible, and ecologically responsible alternatives exist. Furthermore, lithium and other rare earth elements that comprise these batteries is largely controlled by adversarial countries.

Description of the Technology
Carbon Dots (CDs) are nanoscale, crystalline structures of elemental carbon (i.e., de-sulfurized coal) produced by transforming common carbon to adopt unique superconductivity and supercapacitor properties. Mixing CDs with peroxide and a composite liquid formed from byproducts gathered while purifying coal, produces a low-cost, safe battery that functions by converting photons into electrons. Thus, CD batteries are biodegradable, non-toxic, and biologically and ecologically safe.

The Current Development Status of the Technology
With its nontraditional partner, Wagner Star Industries, HII tested a new production method yielding a near 1:1 carbon-to-CDs conversion ratio, which is significantly higher than other conventional processes currently in the CD market. Early results show possibility of significant scaling, following streamlined production. The carbon conversion process, CDs, and batteries are technology readiness level (TRL) 3, with three prototypes ready for independent third-party verification, which can validate its performance compared to lithium batteries.

Test/Simulation Data Supporting Performance Claims
By beaming a 1-watt laser beam onto the composite mixture, we observed the CDs converting the beam into stored energy while not igniting, as a fuel source would. Instead, the CD battery sourced its electric power from one or more electrochemical sources, mainly converting radiation photons to electricity.

We have three prototypes: 1) The 1:5 CDs-to-composite liquid ratio shows robust rechargeable qualities. 2) The 1:10 CDs-to-composite liquid is less rechargeable but decomposes entirely within 24 hours. Notably, CDs will decompose when exposed to water, whereas lithium batteries will explode. 3) The third prototype employs a proprietary composite liquid of fluoride ions for increased durability, numbers of cycles, and photoluminescence to indicate active charging.

Next Steps/Potential Benefits
CD batteries cost half that of lithium and current conventional batteries and can be made domestically from lightweight carbon and water composite. Other potential benefits for this technology include forming nanodiamond batteries with CD filaments for industrial and automotive applications and self-rechargeable batteries for electronics (e.g., cell phones, laptops, radios). CDs can also feasibly replace highly volatile hydrazine in satellites in space. The next step is to verify testing and field applications.

<table>
<thead>
<tr>
<th>PROBLEM STATEMENT</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium and conventional based batteries pose significant environmental and personal hazards due to their highly explosive and corrosive nature and carcinogenic qualities. Producing a non-explosive battery using carbon dots does not pose these same hazards. Domestically, we lag in the excavation of lithium and other rare earth elements that comprise these batteries because the market is largely controlled by adversarial countries.</td>
<td>The cost of CD batteries is half that of lithium and current conventional batteries and can be made domestically from lightweight carbon and water composite. CD filaments can be used to make nanodiamond batteries which can power industrial batteries (automotive), and as self-rechargeable batteries for electronics such as cell phones, laptops, and radios. Additionally, it may be plausible to build functional satellites based on the concept of self-rechargeable batteries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGY SOLUTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production method yielding a near 1:1 carbon-to-Carbon Dots (CDs) conversion ratio, which is significantly higher than other conventional processes currently in the CD market. Mixing CDs with peroxide and a composite liquid formed from byproducts gathered while purifying coal, produces a low-cost, safe battery that functions by converting photons into electrons. Samples of encased CDs in a composite liquid indicate battery energy storage/conversion. Early results show these batteries are biodegradable and can use byproducts from coal purification to enable scaling, following streamlined production. Thereby making CD batteries biodegradable, non-toxic, and biologically and ecologically safe.</td>
<td>Mixing Carbon Dots with peroxide and a composite liquid formed from byproducts gathered while purifying coal, produces a low-cost, safe battery that functions by converting photons into electrons.</td>
</tr>
</tbody>
</table>
COCOON IMPROVED THERMAL ACOUSTIC BLANKET (ITAB)

PETER LORD

Cocoon, Inc.
plord@cocoon-inc.com
+1.603.964.9421

Problem Statement:
The Cargo Helicopter Program Management Office identified deficiencies in the Chinook legacy blanket system that negatively impact readiness, and maintenance costs and man-hours. Identified deficiencies included:

- Moisture trapped between blankets and airframe leads to mold and corrosion, and requires frequent inspections and cleaning.
- Absorption of fluids, oils, lubricants - contaminates the blankets and adds weight.
- Absorption of hydrocarbon contaminants increases potential fire hazards.
- Chronic attachment failures require stringing 550 cord across blankets, limiting access to the airframe and adding maintenance time.
- Quilted design decreases durability while also making field repair difficult.

Description of Technology:
Cocoon developed a 5-layer textile featuring nonwoven material at the center, microporous membranes above and below, completed with facing and backing materials. The 5 layers are laminated together into a single material.

The ITAB had to deliver a series of features that would seem to be mutually exclusive. For example, it had to be highly air-permeable but also oleophobic and hydrophobic, laminated while retaining air-permeability, and lightweight but meet or exceed the acoustic and thermal performance of the much heavier legacy blanket.

Producing a blanket featuring so many competing properties was a significant challenge.

Product Features:
- Lightweight (140+ lbs. lighter than legacy blanket after use)
- Air-Permeable
- Mold/Mildew Resistant
- Thermally Efficient (12% improvement over legacy blanket)
- Acoustically Absorbent (40% improvement over legacy blanket)
- Hydrophobic & Waterproof
- Oleophobic
- Inherently Anti-Static (approved for use with ordnance)

The ITAB passed all required testing regarding flame, smoke, and toxicity.

Benefits:
A. The ITAB passes testing for microbial growth and ongoing flight tests have shown a dramatic reduction in both mold and corrosion on the airframe.
B. The ITAB is 140+ pounds lighter than the legacy blanket after use, increasing the mission capability of the CH-47.
C. The materials themselves are flame resistant and resist contaminants. The ITAB passes all required testing regarding flame, smoke, and toxicity.
D. By eliminating the need for 550 cord, access panels remain accessible and inspections are quicker and easier. Installation, maintenance, and removal are also quicker and easier.
E. Lamination versus quilting eliminates absorption of fluids, preventing contamination and weight-gain.
F. The ITAB requires less repair and is far more easily repaired in the field when necessary.

Current Development Status:
The ITAB is at TRL 9. It received Air-Worthiness Certification, is in the CH-47 IETM, and has been installed on +/- 80 CH-47s.

Testing/Simulation Data:
The ITAB underwent significant testing, which included the following:

- ASTM D737 (Air Permeability)
- ASTM E96 BW (Water Vapor Transmission)
- MIL-STD-810G (Vibration, Fungus, Fluid Contamination, Humidity, etc.)
- ISO 811 (Hydrostatic Pressure Test)
- AATCC 118 (Oil Repellency)
- ASTM D3776 (Fabric Weight Wet & Dry)
- FAR 25.853 (Smoke Density, Flame Resistance)
- BSS 7239 (Combustion Toxicity)
- ASTM C518 (Thermal Transmission)
- ASTM E2611 (Sound Transmission Loss)
- ASTM D4966 (Martindale Abrasion)
- ASTM D5035 (Tensile Strength)
- ASTM D2261 (Tongue Tear)
- ASHRAE 52.2 (Filtration)
- FED STD 191A TM 5931
- Electrostatic Discharge
- ISO 811 (Hydrostatic Pressure Test)

Next Steps/Potential Benefits:
Development is underway for the C-130 Hercules, which also suffers from airframe corrosion. The technology is applicable to any military cargo aircraft employing similar blanket systems. Cocoon also continues to improve the ITAB system.
Defense equipment cooling and sewage systems has issue with corrosion, worker health, high labor costs and significant asset damage (especially Navy). Envirolead (Australian defence Manufacturer of the Year 2022) designed the descalers specifically for the submarine fleet. The product is currently in product both in Australia and the United States. Extensive test data is available showing zero damage to all metal surfaces, no elastomer damage and 100% efficacy with full concentrations over 6 full days. Full radiation contamination results achieved also.

Envirolead have also innovated complete flush systems and the rate of cycle docking activities has reduced significantly due to improved flush results. Systems are also passivated with the envirolead chemistry each time. Next steps would involve US testing and validation before incorporation across the fleet and other Defence equipment.

System efficiencies will be significantly improved because equipment flushing can now be conducted in situ without having to remove items. maintenance costs savings will be substantial and due no not having to dismantle and reassemble plus zero corrosion of assets will mean less asset replacement. Envirolead scale removers are not hazardous and can be typically disposed to sewer after flushes are complete because they are manufactured from 100% biobased renewable plant sources.

Product is ready for the US market with manufacturing happening in Tennessee.

Envirolead descalers was developed for submarines and no other descaling chemistry in the world offers zero corrosion, safety, and ease of disposal. The product is mature and is being used around the world. Applications include any areas where scale may develop in water supplies, water cooling / heating systems, radiators, cooling towers, and all marine applications.

Flushing and descaling already exists as an action within DoD, however the adaption of the innovative chemistry will transform maintenance procedures by reducing prep and clean-up activities, eliminate dangerous goods and eliminate asset damage. Adaptation will involve refinement of work instructions and the associated operator training.

Envirolead has written comments from NATO in Europe that we are keen to materialize (edited extract copied below)

“Thank you for your insightful presentation, which I will take on board from central support to operations of codification system. I do observe numerus approaches to hazmat materiel in the nations, so the challenge we face was how to find a common grounds, and while we move to new environment of more flexible data exchange, these will be revisited. I see that your approach is an effective one, and same pattern could be undertaken in other countries, among 60 plus countries.” - Codification Support Section Chief, NATO Support and Procurement Agency | General and Cooperative Services Programme LB | L-8302 Capellen, G.D. Luxembourg
Bearings are fielded inside many DoD aviation systems and their care and maintenance is critical to mission capability. Operating Automated Ultrasonic Bearing Cleaning Line (AUBCL) systems within the DoD depots will improve mission readiness utilizing repeatable part processing reducing and, in many cases, eliminating rework. Additionally, flight safety will be maximized because these depot maintenance systems will help find component deficiencies (cracks and corrosion) efficiently and with higher fidelity than artisans who possess varying experience and training.

The first dedicated Ultrasonic Bearing Cleaning Line is designed to process bearing components, regardless of design or size, through a 5 stage fully automated washing, cleaning and drying process that allows the bearing components to be accurately inspected to Engine OEM and/or customer requirements.

The FinnSonic “Tempo” process is fully automatic from the loading to unloading; smart process control that allows a selection of process parameters, full process traceability including automatic chemistry analysis and auto adjustment control based on usage.

The system is Manufacturing 4.0 ready.

Finally, reduced operating costs, ergonomic as well as optimized health and safety designs result in a reduction in the number of artisans required per line allowing the depot to repurpose those labor skills to areas and tasks requiring a higher degree of engineering oversight. With seven (7) TempoTM Automated Ultrasonic Cleaning Lines in operation at major engine OEMs and engine overhaul facilities globally this proven capability presents a risk mitigated automation process solution the DoD can readily implement today within the depots.

PROBLEM STATEMENT

Commercial Experience
- Bearing cleaning and refurbishment greatly reduces supply chain risk.
- The potential savings from bearing rework varies from 53-82% of the new bearing depending on cost, size and complexity of the bearing.
- Automation results in up to 80% cycle time reduction and eliminates rework.
- Life of the reworked bearing ranges from 87-99% of the new bearing.
- 90% of used bearings can be recovered and reused during engine MRO.
- FAA encourages this practice for all Commercial Engine Overhaul activity.

Current DoD Issue
- Bearings are often the limiting factor in the supply chain during MRO process.
- Current DoD bearing cleaning processes are primarily manual.
- Many DoD repair facilities acquire new bearings during MRO adding costs.
- Cleaning the bearings can be a challenge.
- Safety issues can result from improperly cleaned bearings.

BENEFITS

- Environmentally friendly aqueous cleaning solution that uses innovative ultrasonic transducers optimally positioned to maximize efficiency.
- Robust and commercially proven system that facilitates a first-class component inspection result and ensures correct component disposition.
- In excess of 90% of the used bearings will be fit for further service.
- Increased first time cleaning yields by 24%.
- Safe and effective application of industry/OEM accepted standards.
- Improved asset management, reduced asset cycle time, 300% reduction in cleaning time, and associated lower costs.
- 19% improvement in Return to Service Yields (RTS).
- Repair has a significantly lower carbon footprint than replace with a new component, regardless of repairability.
- Ergonomically friendly – eliminates worker injury.
- Faster, Safer and Cheaper with proven technology.

TECHNOLOGY SOLUTION

- The first dedicated Ultrasonic Bearing Cleaning Line is designed to process bearing components, regardless of design or size, through a 5 stage fully automated washing, cleaning and drying process that allows the components to be accurately inspected to Engine OEM requirements.
- The FinnSonic “Tempo” process is fully automatic from the loading to unloading; smart process control that allows a selection of process parameters, full process traceability including automatic chemistry analysis and auto adjustment control based on usage.
- The system is Manufacturing 4.0 ready.
- There are 7 FinnSonic systems in operation with major Engine OEM’s and Engine overhaul global facilities.
FULLY AUTOMATED THERMAL SPRAY PROCESS

MIKE POCHKOWSKI

DAES Group
mike.pochkowski@daesgroup.com
+1.512.994.5706

U.S. Department of Defense has had to decommission countless high-value military platforms due to corrosion damage. Without adequate repair technologies available, maintenance members faced enormous costs and downtime whenever they tried to fix and replace corroded parts. The thermal spray process addresses the corrosion issue by enhancing the properties of metal surfaces, providing superior wear resistance, corrosion resistance, and tribological performance.

Via robotic automation and superior flame/powder management The Coating Machine Model IITM offers high first pass yield and excellent throughput. repeatability. The machine is a very complete – plug and play and well suited an asset for coating applications where parts need to be sprayed in medium to large batches.

Benefits:

• Continuous operation results is increased production rates in comparison to conventional spray system. Up to 500% has been achieved with high volume components.
• Due to continuous running and the use of integrated flame sensor technology increased quality and reduction in rejects
• Operators are 75% less exposed to toxic fumes, dust and noise
• Small footprint
• Thermal Spray system is pre-installed and tested at manufactures site, making installation quick and easy. Installation times at site are reduced by 30-40%
• Using remote and VR technology, service can be provided in a far more efficient manner. 75% of onsite visits are eliminated reducing service costs considerable

TECHNOLOGY SOLUTION

• Using fully digital system so all components work in a net-work and data can be extracted for quality checks and process controls
• Use of automatic in-feed and out-feed to increase production and less operator involvement
• Use of flame analyses equipment to assure the flame with powder is always running within the given parameter range
• Use of automated coating thickness measurement equipment to make sure applied coating thickness is always within spec.
• In-line laser ablation to replace the grit blasting process is being implemented
FULLY AUTOMATED GREEN PARTS CLEANING AND SURFACE TREATMENT PROCESS

MIKE POCHKOWSKI

DAES Group
mike.pochkowski@daesgroup.com
+1.512.994.5706

The Factory of the Future – Fully Automated Surface Treatment Cleaning Line (FAST-CL™) combines strict regulatory compliance with safe and smart process control and automation for aircraft component processing. System automation minimizes human risk factors, adds rigorous traceability, and significantly speeds up processing time thus reducing the overall end to end depot cycle time contributing to improved materiel readiness. Innovative ventilation and wastewater treatment processes isolate process chemistries significantly minimizing health challenges to personnel and structural damage to facilities.

Using a FAST-CL™ automated parts cleaning system improves mission readiness via utilization of automated smart process control greatly reducing artisan involvement and handling risks. Reduced cycle times mean more components and systems will be available to the warfighter as needed. Parts processed by these systems result in maximized flight safety. Finally, reduced operating costs and valuable human resources can be repurposed to more strategic roles.

FAST-CL™ launched operations within the Ogden ALC in Q3 2021 cleaning a substantial mix of APU parts for several different airframes. Measurable, significant reduction in energy consumption, chemical usage, backlog reduction, and enhanced first pass yield have been realized since system startup.

PROBLEM STATEMENT
- Data indicated that industrial activity accounts for two thirds of the pollution that causes climate change
- World Health Organization stated 9 out of 10 people breath air that exceeds pollution standards, causing 4.2 million deaths annually.
- The Surface Treatment activities are a prime source of pollution due to hazardous chemical usage, toxic exhaust and wastewater residue.
- Component Cleaning processes are in the critical path for nearly all components undergoing MRO and the cleaning shops are often “bottlenecks”.
- Generally, the cleaning operations have the highest staff turnover and the highest absentee rates.
- Effective cleaning processes are critical for expedient cycle times and for the overall integrity of the maintenance process.

BENEFITS
- The automated, smart process greatly reduces, or eliminates, human involvement and handling risk.
- Manufacturing 4.0 ready – full digital traceability
- Significantly reduces labor costs by 50+%, energy costs by up to 55%, chemical utilization by up to 30% & wastewater by 50%; all key elements in creating a sustainable operation.
- Reduced cycle time means more components and systems are available to warfighters when needed.
- Valuable human resources can be repurposed to more desirable roles.
- Safer, Greener, Cheaper, Quicker resulting in an efficient and cleaner work environment

TECHNOLOGY SOLUTION
- Surface Treatment can be clean, safe and an environmentally friendly process with the innovative use of technology.
- The “Galvatek Future Factory” Surface Treatment operations combine strict regulatory compliance with safe & smart process control and automation.
- Embracing Chemical and EH&S concerns with the demands of process efficiency, ecological, sustainable and safe production can be achieved.
- The innovative ventilation process effectively extracts vapors from chemical tanks; eliminating the possibility of them emitted dangerous vapors into the air and causing health challenges and structural damage.
- An ultra-efficient recycling Wastewater Treatment Process manages wastewater to strict local, state and federal regulations.
- Automation minimizes human risk factors and significantly speeds-up processing time – reducing overall end to end MRO cycle time.
Military applications require metal parts and components with exact, even finishes, and improved compression and fatigue strength. The parts must meet the most demanding specifications and tolerances and perform well under extreme and challenging conditions. Due to their geometric complexity the most difficult parts to peen for optimum fatigue strength are aero engine fan blades and turbine discs.

Implementing 14-axis robotic technology with two robots, an automated nozzle/lance exchange, process control of shot size and shape, plus closed loop shot flow and air pressure systems the Fully Automated 14 Axes Shot-peening system has unmatched performance. Cycle times are reduced up to 45%, setup times are shortened by 60%, and measurement and control of key parameters leads to guaranteed process repeatability. First pass yields are measurably higher over manual methods and artisan fatigue and exposure to injury are non-existent with this robotic methodology.
IBRs and Blisks are often the limiting factor in the supply chain during the MRO process – small defects in the component require replacement – leading to excessively long MRO cycle times – leading to non-availability of critical system and components needed by the warfighter. Current DoD IBR and Blisk processes are primarily manual, time-consuming, subject to human-induced variations in quality of airfoil performance. Many DoD repair depots opt for only acquiring new IBR and Blisk during MRO, which adds significant cycle time and cost to the process.

The manual IBR and Blisk inspection processes often result in variable decisions on go/no-go for repairs, avoidable scrapage and/or incorrect work-scope application can be delivered with IBR and Blisk repair automation. Additionally, safety issues can result from improperly manually repaired and inspected IBR and Blisk components, results in weld metallurgy, airfoil leading edge final profile and cord width can be less than perfect. Performance loss and safety critical failures have resulted from improperly repaired components.

The Fully Automated IBR and Blisk Repair Process uses automated non-contact scanning of IBR and Blisk components to compare the SCAN STL to the original CAD model and characterize damage / wear. Then the TTL Adaptive Machining technology scan data updates the CAD model, to create a serialized CAD model CAM process for repair scheme cut back. A clean, Liburdi welding process is then employed to add minimum material onto each airfoil repair in line with updated repair scheme geometry. All data creation and movement are automated with industry 4.0 compliant architecture.

The Fully Automated IBR and Blisk Repair Process employs robust and commercially proven automation system used on many airfoil P/N’s. Additionally, the system will allow the DoD to realize:

- More than 80% of the airfoil damage ‘repairable’ IBR and Blisk will be fit for further service.
- Inspection standardization with yield increase + 25%
- Improved IBR and Blisk asset management, reduced asset supply cycle time, 200% reduction in process time, with associated lower costs.
- Quality up, risk down, supply chain security.
- A significantly lower carbon footprint than replace with a new component... regardless of repairability
- Ergonomically friendly – eliminates worker costly repetitive injury from complex blending operations

BENEFITS

- Robust and commercially proven automation system used on many simple airfoil MRO P/N’s
- In excess of 80% of the airfoil damage ‘repairable’ IBR & Blisk will be fit for further service.
- Inspection standardization with yield increase + 25%
- Automated, Safe and effective application of industry/OEM MRO process accepted standards.
- Improved IBR & Blisk asset management, reduced asset supply cycle time, 200% reduction in process time, with associated lower costs.
- Quality up, risk down, supply secure.
- Repair has a significantly lower carbon footprint than replacement.
- Ergonomically friendly – eliminates worker costly repetitive injury from complex blending operations
- Faster, Safer and Cheaper with proven technology
- Technology transfer – re-application of approved processes to a more complex, higher payback IBR & Blisk part family, critical to the DoD.

PROBLEM STATEMENT

Current DoD Issue

- IBR & Blisk are often the limiting factor in the supply chain during the MRO process - small defects in the component require replacement – leading to excessively long MRO cycle times – leading to non-availability of components.
- Current DoD IBR & Blisk processes are primarily manual, time-consuming, subject to human-induced variations in quality of airfoil performance.
- Many DoD repair facilities opt for only acquiring new IBR & Blisk during MRO, which adds significant cycle time and cost to the process.
- Currently many IBR & Blisk inspection processes are manual; resulting in variable decisions on go/no-go for repairs, avoidable scrapage and/or incorrect work-scope application can be delivered with IBR & Blisk repair automation.
- Safety issues can result from improperly manually repaired and inspected IBR & Blisk components, results in weld metallurgy, airfoil leading edge final profile and cord width can be less than perfect. Performance loss and safety critical failures have resulted from improperly repaired components.

TECHNOLOGY SOLUTION

- Automated Non-Contact scanning of IBR & Blisk components to compare the SCAN STL to the original CAD model and characterize damage / wear.
- TTL Adaptive Machining technology Scan data update of CAD model, to create a serialized CAD model CAM process for repair scheme Cut Back.
- Clean, Liburdi Welding process to add minimum material onto each airfoil repair inline with updated repair scheme geometry.
- Non-Contact scan, Automated Scan Data - CAD, Serialized NX CAM/CAM for TTL ‘Adaptive Machining’ Blending, post process, simulate = Closed Loop, Toolroom Technology Limited – (Based in the UK 35 Years experience in Gas Turbine Repair Automation working with DAES Group).
- Inspect, feedback any process improvement to improve quality of blend and reduce final finishing of airfoil.
- Automated loading and unloading of the Scan-box, Machine tool cut-back, Welding system and Machine tool Adaptive Machining Final blending.
- All data creation and movement automated with industry 4.0 compliant architecture.
The annual financial cost of corrosion to the US DOD is somewhere in the $25 billion range. Corrosion not only takes its toll on the US DOD in terms of dollars, but corrosion also takes its toll on having critical military assets out of service for extended periods of time. Instead of having critically important assets deployed where needed, they sit in dry docks or paint and repair stations around the globe. Sustainment of the US DOD assets is more critical than ever with the reduction of military budgets coupled with growing tensions around the world with adversarial nations.

The protection and sustainment of existing (as well as new) assets is needed now more than ever.

The problem is that there has not been any new, revolutionary technologies or products to really protect US DOD assets from corrosion, abrasion, chemical and UV attacks on paint. Existing paint companies keep producing and supplying the same old paint technologies from the same old playbook from yester-year. For decades now, there really has not been any new, innovative paint technology introduced into the marketplace. That’s because the same chemistry knowledge base has nothing new to offer other than minor changes that allow these companies to create “new” products with a new name that in reality, these new products are basically the same old product but with just a different marketing campaign that allows those companies to do what they are expected to do by their stockholders and that is to sell paint and sell a lot of it.

Why introduce new technologies when the customers keep purchasing the old or revised technologies?

ToughGuard High Performance Coatings manufactures a true innovative product that is a game changer in the paint coatings industry. The ToughGuard NHP Xtreme clear coat paint system is the answer not only for corrosion mitigation, but our revolutionary technology/chemistry provides unheard of protection against chemical, abrasion, and UV degradation. Our technology took over 10 years to develop and over 4600 iterations of the product before it was taken to market. Our NHP Xtreme coating has been tested, vetted, and approved by some of the most recognizable US and global companies.

Our technology outperforms all other paint coating systems on the market. We have extensive tests conducted by reputable 3rd party laboratories as well as real world, in the field use and tests. NHP has been in the market around the world and is winning over customer’s admiration and trust. Our ToughGuard NHP was tested by the USAF corrosion group in 2020 at The U of Dayton Research Institute & performed exceedingly well. The USAF was so impressed with the results, they are looking to conduct more testing on our NHP product. They just need some funds for more testing.

If the DOD wants to solve the ongoing and severe issues & costs of corrosion & paint degradation due to chemical, abrasion, and UV attacks, then NHP Xtreme is their answer to this problem!
Unmanned systems and difficult-to-access fixed assets experience fault conditions requiring application of lubricant materials. Readiness is lowered and cycle times increased by the need to recall an unmanned platform for servicing. Likewise, there are potential risks to personnel involved in accessing remote fixed assets to perform lubrication services. The ability to autonomously apply lubricants (or adhesive materials for self-repair) in response to fault conditions without human intervention and while the asset remains on station will avoid downtime and eliminate risks to personnel.

The technology solution places lubricant materials where they will be needed until their release is triggered by the presence of a fault condition. Lubricants (or adhesives or other self-repair materials) are stored in 3D printed microcontainers and affixed to the system component potentially requiring maintenance. These storage shells are constructed of a durable polymer (Polymer #1). After lubricant is injected into the storage shells each is sealed with a second, less durable polymer (Polymer #2). The polymer used to cap the shells is selected for its sensitivity to one or more expected fault conditions (e.g., excess heat, friction, vibration, or acidity). Polymer #2 is printed atop the shells with a graduated depth leaving some shells thinly capped while others are covered more thickly. If a fault condition arises its presence acts to erode the fault-sensitive caps until the payload is released, starting with the shells that are most thinly capped. When the fault condition is resolved through application of the released payload, erosion of the Polymer #2 caps ceases with the thicker caps remaining intact and available to release additional lubricants in response to a recurrence of the fault condition. The self-lubrication/repair process is triggered autonomously without any action required by maintenance personnel.

InfraTrac’s experiments, including a pending patent and two refereed publications, show feasibility in leak-free encapsulation, in polymer containers with cap-trigger mechanisms and microfluidic-fill liquid cores. Already replicated in lab conditions, the work is being extended to assess additional materials for the shells, caps, and core payloads. The effectiveness of autonomous self-lubrication/repair can be demonstrated by applying vinegar to an asset operating in a dusty environment, such as a drone or robotic system, to simulate a corrosive fault condition. The vinegar will erode the polymer caps covering the 3D printed storage shells and allow a thin monolayer of lubricant to coat the impacted surface. Effectiveness is evaluated on the released lubricant’s ability to correct the corrosive fault condition. Further research is needed to confirm the range of DoD maintenance material payloads suitable for encapsulation and to define timed release curves for Polymer #2 candidates under various operating conditions.

PROBLEM STATEMENT
- Periodic lubrication is essential to maintaining the operational effectiveness of many terrestrial, airborne, and space-based DoD assets.
- The need for lubrication arises from detectable systemic and environmental conditions such as heat and friction.
- If lubricants are not applied in a timely manner in response to such conditions then system performance will be degraded and critical components may fail.
- When the impacted system is unmanned then it must be recalled for lubrication service (resulting in increased downtime) or accessed in situ by support personnel (potentially placing those personnel at risk).

BENEFITS
- 3D printed shells filled with lubricant materials and capped with a polymer that degrades autonomously in the presence of a triggering condition(s) will:
 - Reduce system downtime.
 - Enable unmanned systems to stay on station longer.
 - Avoid the need for onsite maintenance in harsh or hostile environments.
 - Extend the lifespan of critical components through immediate maintenance interventions.
- The proposed technology solution can be extended beyond lubricant application to the autonomous delivery of adhesives and other liquid or powdered self-repair materials.

TECHNOLOGY SOLUTION
- Dual-polymer 3D printed microcontainers can be used to store lubricants where they are needed until a system fault or environmental condition triggers their release.
- Lubricant materials are injected into 3D printed shells manufactured using a durable substrate (Polymer #1).
- The filled shells are sealed with a 3D printed cap composed of a different polymer (Polymer #2) chosen for its susceptibility to degrade under a triggering condition (temperature, mechanical friction, vibration, UV light, pH).
- When the fault condition is present the caps thin and allow the lubricant to flow from the shell until the condition abates.

Graphic or Image

<table>
<thead>
<tr>
<th>PRODUCTION PROCESS</th>
<th>IN THE FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 3D print the shell using Polymer 1</td>
<td>1) A trigger condition occurs</td>
</tr>
<tr>
<td>2) Inject the lubricant payload</td>
<td>2) The payload is released from the shell</td>
</tr>
<tr>
<td>3) Cap the filled shell with Polymer 2</td>
<td>3) The payload is released from the shell</td>
</tr>
</tbody>
</table>

IN THE FIELD

1. A trigger condition occurs.
2. The payload is released from the shell.
3. The payload is released from the shell.
SurClean is an Optoelectronics Laser Ablation Research and Development company. It provides application development and manufactures advanced laser coating removal and surface prep machine tools. SurClean is different from its competitors. Its product is the beam delivery system integrated with COTS lasers, chillers, and other products such as robots, vision systems, or AI. We listen to prospects’ problems, what is their desired result, and why they want to use laser. SurClean receives calls asking if we have this capability or that type of machine tool. We thought we were focused. SurClean participated at NAVSEA REPTX and saw first-hand why the industry needs to collaborate. SurClean had many inquiries for a self-contained system to move from location to location allowing the business owner or operator to reduce costs, prevent hazardous waste, and increase safety. Prospects wanted simple, easy-to-use but durable to withstand drops. We built the Transportable Handheld Laser Ablation System. However, at REPTX, we quickly learned the suitcase approach was too difficult to maneuver in and out of compartments and down tight stairs. It’s being repackaged to meet those requirements.

Another discovery is robotics are needed to do large or out-of-reach areas. A solution is collaborating with Geckos Robotics, Penn State ARL, or Sarcos Technologies. SurClean is in discussions on how we might provide add-on kits to the interface. Additionally, BILT offers IPAD instructions to assist the warfighter on how to step by step prepare and set up to use the equipment. SurClean intends to digitize and package with our DoD Transportable Handheld Laser System. SurClean’s equipment is designed based on industry standards simply defined in Wikipedia. Laser ablation is “the process of removing material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimes. At high laser flux, the material is typically converted to a plasma.” To complete the application, optical devices are utilized to guide and manipulate the light to a specific spot size to effectively perform the application. Optoelectronics “is the application of electronic devices and systems that find, detect and control light. In this context, light often includes invisible forms of radiation such as infrared, in addition to visible light. Optoelectronic devices are electrical-to-optical or optical-to-electrical transducers.”

SurClean develops devices to allow for programming-specific parameters for the application, automation, and safety control for the operator, asset, and equipment. SurClean’s focus needs to be expanded to include TOTAL SYSTEM SOLUTION. We must answer the question, “what is needed to complete the repair?” Innovation is constantly taking place in the laser industry, but sometimes it is simply thinking outside the box and collaborating to deliver a TOTAL Solution to complete the repair.

PROBLEM STATEMENT

REPTX opened the opportunity to innovate by simply thinking outside the box and allowing industry to experience the obstacles sailors face when making repairs.

- Not one piece of equipment solves the problem
- Sustainability requirements are not met with traditional methods for surface preparation
- Hazmat issues interfere with doing the job
- Manual documentation is time consuming and requires multiple human touches to track by boat let alone the area and what occurred.
- Safety is an issue climbing to address high points.
- Small, tight spaces are not accessible manually when the tools are larger than the area
- Knowing what to do is not known by everyone

BENEFITS

- Collaboration is the key for Innovation
- Companies reduce overall costs when shared with other companies and provides the customer with a higher satisfaction rate for repetitive sales
- Providing kit adaptions for automation allows DoD to purchase the TOTAL Solution from ONE Supplier but with the support of each individual company
- Adds versatility if ship has various robotics onboard
- Reduces cost when one tool will work for numerous applications
- Laser ablation is safe and requires no PPE other than laser goggles to protect eyes.
- Sensor technology protects asset
- Programming changes for multiple applications
- Digitizing maintenance records reduces cost improves efficiency

TECHNOLOGY SOLUTION

The use of advanced optoelectronics in laser ablation is improved when combined with robotic manipulation. Collaborating with different manufacturers provides versatility by mixing and matching various pieces of equipment for numerous repairs while generating ideas, improvements, and stimulating communications that leads to more solutions. In SurClean’s proposed solution to offer kits containing nozzles and lens for small, tight spaces or to direct the light to the backside of a pipe, will help prevent extensive corrosion and higher repair costs. Offering the various end of arm connections and programs to select the robotic manufacturer provides a cost savings for the DoD while increasing capabilities. IPad instructions for specific repairs reduces the chance of errors and equipment damage utilizing a check list. Data is captured and available for accountability as well as planning purposes. More can be accomplished when industry is focused on the TOTAL solution.
SpartaBrake Metal Surface Cleaner is an advance in formulation and design to use Hi-Performance Technical Grade Oxygenated chemistry with a specific target in-job or task to be accomplished provides immediate efficiency and effectiveness to every application it created to accomplish and complete – EASY TO USE & WORKER SAFE. Normally less product is used to accomplish the very same task as compared to the 100% petroleum counterpart.

SpartaBrake Metal Parts Cleaner is original and innovated unto itself (currently) the ONLY USDA certified product (USDA # 11282) to its application and category. This product and chemical technology was BIRTHED from QPL performance qualification with a similar product, since there was not exact specification, we were allowed without restriction to create a complete Hi-Performance product and we did.

Maintenance is improved as SpartaBrake provides both: excellent cleaning performance: a safe use environment for the personal worker to not be effected by harsh chemicals – to work effective with greater personal efficiency.

REAL benefactor of implementing the SpartaBrake program is the worker/mechanic and how well he can do this job better as compared to the use of harsh chemicals. SpartaBrake program was BIRTHED about five years ago during the test and successful development of the SpartaMax 372F BioRBC QPL MIL-PRF-372F.

During that period of creation, a discovery (Idea) was to development a second product. SpartaBrake was then developed in use with multiple automotive & common working shop applications.

Through the STED program for promotion of BioBase Hi-Performance alternatives the Noblis Organization as of 15 OCT has made SpartaBrake w/ successful demos to multiple (12) Military or Gov groups such as but not limited to:

• Joint Base Lewis McGo
• Red River Army Depot
• FBI Quantico TEVOC
• Marine Corps Mountain Warfare Training Center

These 12 mentioned have acceptance.

PROBLEM STATEMENT

Mechanics & Service Members in situations within Multiple Branches of DoD, Federal & Commercial shops or work facilities with the areas of Automotive, Aerospace & Military vehicles etc. that require the need to clean and remove metal surfaces of Carbon, Contaminates and light oils etc. (like a brake job etc.).

ALL HAVE THE SAME PROBLEM OR ISSUE.

Common Brake Cleaners (if you look at the SDS) contain many different harsh petroleum chemicals; when breathed in the air or absorbed into the skin and gets into the lungs or blood stream by the worker: over time will cause multiple troubles with the Human Body, many times creating long term physical & neurological etc. effects.

Current formulated Common Brake Cleaners because of EPA regulations have been reduced in cleaning & overall operational performance: while the cost today is higher.

These issues as mention above have been and are solved with a technical solution that has been around for nearly ten years, and today (2022) has come forth. Multiple certifications and approvals are as mentioned below.

TECHNOLOGY SOLUTION

TODAY, NOW THERE IS AN ANSWER TO SOLVE THE PROBLEM & ISSUE STATED.

USE A SPECIFIC formulated product that does not use harsh petroleum chemicals. Product that uses Technical Grade Bio Based Renewable Resource Chemical Materials that are naturally oxygenated. Technical Grade designed to go after Carbon with a specific Detergent package to cleanse deep into surfaces & most contaminates. Anti Static capability to help resist during cleaning event carbon & dirt from returning. Commercial Grade Evaporation capability, when completing its job it is gone & clean.

SpartaBrake Cleaner can be used in multiple applications with easy cross reference QPL MIL-PRF-372F. Compared to current Petroleum Brake & Metal Parts Cleaners without any reduction in cleaning performance. NO Physical issues in use (unless allergic to Pine or Citrus). NO OSHA- NON HARAZARD reportability. EASY TO USE with HI- PERFORMANCE.

Universal to multiple applications and use. Can be easily sold through multiple DoD, Federal & Commercial purchase platforms including but not limited to: DLA (Defense Logistics Agency), GSA, Fed-Mall and many others or MFG Direct.

IN the end, Just about everyone that used or has experienced SpartaBrake Metal Surface cleaner says: "where have you been all my life" thank you being here now.

SPARTABRAKE METAL SURFACE CLEANER – USDA CERTIFIED # 11282 BENEFITS:

Spartabrake THE ONLY BIOBASE METAL CLEANING USDA REGISTERED PRODUCT

No harsh petroleum chemicals, NON-Acetone – LOW VOC Commercial Product (considered as a off the shelf commercial product – NON Military Specification). SPF- Federal Procurement working the GSA requirements of FAR 52.223-2 for BioBase.

SpartaBrake Cleaner can be used in multiple applications with easy cross reference replacement to current Petroleum Brake & Metal Parts Cleaners without any reduction in cleaning performance. NO Physical issues in use (unless allergic to Pine or Citrus). NO OSHA- NON HARAZARD reportability. EASY TO USE with HI- PERFORMANCE.

Universal to multiple applications and use. Can be easily sold through multiple DoD, Federal & Commercial purchase platforms including but not limited to: DLA (Defense Logistics Agency), GSA, Fed-Mall and many others or MFG Direct.

These 12 mentioned have acceptance.

BENEFITS

• Naval Facilities Engineering Command (NFRDC) - Pre-Approved Product with Ready to Use, best in class site for SpartaMax Defense Protection of Naval Buildings.

• Marine Corps Air Ground Combat Center
• Shaw AFB, Eglin AFB, Hurlburt Field AFB
• Patrick Space Force AFB
• NASA Marshall Space Flight Center
• NASA Armstrong Flight Research Center
• NASA Kennedy Space Center
Problem: Without fuel, an Army dies on the battlefield. Refueling on the battlefield is a dangerous operation for a combat unit so reducing fuel consumption is needed. In 2008 alone, approximately 68 million gallons of fuel were supplied per month to support U.S. military operations in Iraq and Afghanistan, and in the 2014 fiscal year, DOD consumed 87.4 million barrels of fuel, and the “fully burdened” cost runs as high as $400+ per gallon. (Note: Diesel fuel costs have increased approximately 75 to 100% in the last 3 years) Maintenance costs also continue to rise in the military and commercial market because of the laws and regulations that are designed to reduce Greenhouse Gases (GHG). The problem exists now and needs a solution now because there does not appear to be a replacement as good as diesel on the battlefield in the near future. Payloads continue to increase bringing the margins of horsepower available per vehicle down.

Solution: America possesses plenty of the natural resources to produce diesel. There is no shortage of petroleum so how do we improve on an excellent fuel with the minimum change to existing equipment and engines? The Hydrogen Fuel Generator (HFG) is a TRL-9, MRL-10 mature product that has been tested and fielded on commercial trucks, boats, and generators. The HFG produces hydrogen from water by patented electrolysis device and injects it through the air intake, mixing it with the air and diesel in the combustion chamber resulting in 10-20% reduction in fuel consumption and an increase of horsepower and torque by 4-5%. Hydrogen provides a more complete burn in the combustion process which will result in lower maintenance costs. Hydrogen will burn off carbon in the cylinder reducing friction and decreasing the need for oil changes. The cleaner burn of the diesel results in a reduction of GHG (20-50%) and particulates (86-90%) resulting in less replacement of Diesel Particulate Filters (DPF). When using hydrogen, safety is paramount. The HFG is completely safe autonomically because hydrogen is produced only on demand. There is no storage of hydrogen on the vehicle. The HFG is lightweight and small, easy to install at the organizational level of maintenance, and can adapt to any diesel engine.

Benefits:
1. Reduces casualties and loss of vehicles by reducing the number of trucks needed to resupply.
2. Reduces vulnerability of combat vehicles from long-range artillery, aviation, UAV’s by refueling less on the battlefield.
3. Reduces fuel consumption (10-20%) 4. HFG increases horsepower and torque by 4-5%
5. TRLMRL-10 –Easily installed on any existing diesel engine.
6. Completely safe because no hydrogen is stored-Produced on Demand
7. HFG Reduces maintenance costs because the hydrogen increases thermal efficiencies keeping the engines cleaner thus reducing oil changes and diesel particulate filters (DPF) of trucks.
8. HFG Improves reliability and durability of diesel engine.
9. HFG Reduces substantially GHG (20-50%) and particulate (86-90%)
10. HFG is scalable and adaptable to any diesel engine used in military or commercial trucks, rail, marine, and power generators.

Problem Statement

1.	Without fuel, an Army dies on the battlefield.
2.	Casualties among fuel resupply personnel are significant. A report calculates that a 10% reduction in fuel consumption over a five-year period could lead to a reduction of 35 fuel-related resupply casualties over the same period.
3.	Fuel and Maintenance costs are rising.
4.	Problem exist now and needs a solution now.
5.	Refueling of combat vehicles is a vulnerable operation.
6.	Studies show that diesel fuel and diesel engines will not be replaced with alternative energy in the near future.
7.	Payloads are increasing on existing trucks
8.	Need energy that reduces fuel consumption and increase horsepower now.
9.	Need to reduce logistics burden

Technology Solution

1.	Hydrogen Fuel Generator (HFG) produces hydrogen on-demand directly into the engine combustion chamber by using water as its source of hydrogen fuel
2.	iPhi™ HFG significantly reduces fuel consumption (10-20%) and increases horsepower and torque (4-5%)
4.	Adaptable and easy to install to any diesel, JP-8 engine for tactical or combat vehicles or commercial trucks.
5.	Electrolysis device is Small and lightweight.
6.	Hydrogen is produced only on demand.
7.	Reduces logistics burden and, improves tactical mobility now by reducing the amount of fuel used.
Problem: Water resilience, logistics, cost and soldier safety: The closer to the point of the spear on the battlefield, the more costly water becomes; in funds, fuel, vehicle assets, and the lives of soldiers’ bringing the water, and the soldiers needing water. DARPA states that the USMC suffered 10-12% of casualties in Iraq and Afghanistan to water and water-related logistic. The average cost per gallon was estimated to be $55/gallon on the battlefield. Water is the fuel for the soldier. Without water, the soldier dies in 3 days. In the past, we had to go to the source of water, a lake, river, and transport it to where the need is. If there is a natural disaster, usually bottled water is distributed, but this is a band-aid to the problem for hospitals, schools, manufacturing plants, etc. A severe drought in the western states will be restricting water to homes, schools, farmers, manufacturing plants, etc. Bottled water cannot solve this problem. We need a sustainable water production source that can meet emergencies and long-term water shortages.

Solution: Molecule Atmospheric Water Generator (MAWG) is a TRL-6 product that has been tested by the US Army Corps of Engineers and determined that it is the only technology to have exceeded the DARPA target, tested by active-duty personnel on active bases. Two mobile (2) MAWGs will make enough water to sustain a platoon of troops on the move, indefinitely. The water is clean (< 4-8 ppm nominal). Add salt, and you have injectable saline for a mobile hospital or for combat medics. The MAWG coupled with an innovative Hydrogen Fuel Generator (HFG) called iPhiTM is what makes the MAWG mobile because it uses Hydrogen to increase the propulsion system diesel engine horsepower and torque (4-5%) that feeds the energy needs of the MAWG. The HFG also reduces fuel consumption (10-20%) which can turn any military or commercial truck that uses a diesel engine potentially into an integrated mobile water platform using existing equipment for combat mobility or for natural disaster response. The MAWG used in a static situation such as a FOB or commercial hospital or school can use any power source such as alternative energy.

Benefits: MAWG provides long-term sustainable clean water for military and commercial use. MAWG reduces logistics burden and costs: casualties, fuel, and transportation. MAWG brings water production mobility to combat units so that water production moves with the troops and first responders. MAWG is an excellent resource for the State National Guard and FEMA to respond to natural disasters that disrupt water production and distribution. HFG is completely safe because there is no storage of hydrogen on the vehicle. HFG reduces maintenance costs and labor because hydrogen reduces oil changes and diesel particulate filters (DPF) for commercial trucks. HFG Reduces substantially GHG (20-50%) and particulate (86-90%). HFG Improves the reliability and durability of diesel.

PROBLEM STATEMENT

1. Supplying Potable Water on a mobile battlefield or an isolated Forward Operating Base (FOB) and in response to natural disasters is needed now.
2. Water is produced in the rear and normally resupplied using trucks, trailers, and helicopters. Studies state that 10-12% of USMC personnel casualties in Iraq and Afghanistan were from transporting water to the front. Russia is experiencing this today.
3. Water production today (reverse osmosis or bottling plants) is not mobile
4. Need a way of producing sustainable mobile or stationary water production at the point of need on the battlefield, hospitals, ships, communities, etc.
5. Additional power will be required from the existing vehicle propulsion system to produce mobile water production.
6. Alternative energy sources can be used effectively for static situations, but they have many disadvantages when mobility is needed.
7. Severe droughts in western states by providing innovative solutions which impact agriculture, manufacturing, hospitals, community drinking water, and etc.

TECHNOLOGY SOLUTION

1. Two innovative technologies, Molecule Atmospheric Water Generator (MAWG) and Hydrogen Fuel Generator (HFG) will provide mobile water at the point of need using existing diesel propulsion systems.
2. The MAWG is a TRL-6 level of development that has been tested by the US Army Corps of Engineers and states that it exceeds DARPA requirements.
3. The HFG is a TRL-8, MRL-10 product that is fully tested and validated by 3rd Parties such as truck, marine, rail, and generator companies.
4. The HFG reduces fuel consumption (10-20%), increases horsepower/torque (4-5%), reduces maintenance costs, reduces GHG, and is completely safe because the hydrogen is not stored (produced only on demand).
5. The MAWG is ideal for use with alternative energy for static situations.
6. The HFG provides mobility using the vehicle engine because of the extra horsepower produced by the HFG.
7. The MAWG and HFG are scalable for mobile and static water production.
8. The water is clean (< 4-8 ppm nominal). Add salt, and you have injectable saline for mobile combat hospitals or static commercial hospitals.

BENEFITS

1. MAWG provides long-term sustainable clean water for military, First Responders, and commercial use such as hospitals.
2. MAWG reduces logistics burden and costs: casualties, fuel, and transportation.
3. MAWG brings water production mobility to combat units and First responders; an excellent resource for FEMA and State National Guard
4. HFG Reduces maintenance costs because the hydrogen increases thermal efficiencies keeping the engines cleaner thus reducing oil changes and diesel particulate filters (DPF) for commercial trucks.
5. HFG Improves reliability and durability of diesel engine.
6. HFG Reduces substantially GHG (20-50%) and particulate (86-90%)
7. HFG decreases fuel consumption but increases horsepower/torque thus providing the needed energy to fuel the MAWG and the MAWG in return provides the hydrogen for the diesel engine.
8. MAWG and HFG are both scalable to meet mobile and static needs.

sx.org/dod | Maintenance Innovation Challenge | 71
The Blast Bag Company products help reduce the environmental impact of facilities with hazardous chemicals and waste. By using our containment devices, you can route wastewater to the proper locations, keeping it off the ground entirely and surrounding areas. Having no liquid touch the ground is an option, and we can help you accomplish that goal through our products along with custom design.

This would be very instrumental when cleaning the heat exchangers and lube oil coolers onboard the Navy Vessels while both at sea and when in port.

PROBLEM STATEMENT

The current way of containing the effluents while hydroblasting or water washing the Oil Coolers and other heat exchangers on board the Naval vessels is very inefficient and costly due to the inability to contain the effluents properly thus causing additional time having to clean the surrounding areas.

BENEFITS

- Significantly reduces clean up time.
- Reduces setup and teardown time.
- Prevents having to completely shut down the area where the cleaning is taking place.
- Provides additional protection for nearby personnel from wastewater over spray.
- Products are designed to keep effluent and process fluids from hitting the deck.
- Very cost effective.
- Can be custom made to meet your needs.
- We are DOD Approved, Cage Code 902N0.

TECHNOLOGY SOLUTION

- The Blastbag Company manufactures containments that are designed to capture the wastewater and route it to your desired location. The Blast Bag is attached and secured around the flange of the heat exchanger and there is a drain at the bottom of the Blast Bag that has a Camlock fitting which allows for a drain hose to be attached.
- The Blast Bags were recently used at the REPTX Expo at the Naval Base Ventura County in Port Hueneme, CA. to contain the water while Terydon was demonstrating a Heat Exchanger cleaning and when Sarcos Robotics was doing VF Blasting.

Blast Bags used at REPTX
The mission of the Oklahoma City Air Logistics Complex (OC-ALC) is to produce combat ready airpower. The 76th Aircraft Maintenance Group (AMXG) is the largest group in the Air Force, with the combined efforts of 4,400 military and civilian professionals performing heavy depot maintenance on KC-46, KC-135, B-1B, B-52, E-3, and Navy E-6 airframes. 76 AMXG is directly responsible for heavy depot maintenance of the structure and auxiliary systems of various airframes. During the course of this maintenance, mechanics are often required to perform tasks in difficult ergonomic positions for long periods of time. Despite the implementation of many ergonomic solutions to reduce the inherent risk surrounding aircraft maintenance, 76 AMXG mechanics still suffer from strain and sprain injuries. These sprains were either due to direct workload, or due to mistakes classically associated with fatigue or inattention. Industrial exoskeletons (exo) were evaluated as a possible solution. Forty-nine (49) exoskeletons were acquired for the purposes of targeted injury risk reduction. Over the course of several months, dozens of trials were conducted on a variety of maintenance processes within 76 AMXG.

The results those trials have been overwhelmingly positive. The data reveals that within 3 weeks, exo users saw significant reduction in fatigue for targeted physiology, with as much as a 90% reduction in some cases. In four months since the trial began, not a single mechanic has been injured while using the exoskeletons. Additionally, we have witnessed efficiency gains for exo users; in some cases, we have observed tasks completed in half of the expected time. We have also witnessed multiple mechanics reporting palliative effects. More than one mechanic asked to show the exoskeletons to their doctors because it relieved so much back pain. This palliative effect has already contributed to increased mechanic retention and morale boost. We anticipate avoiding over one million dollars in 76 AMXG this year alone.

Local success has spread to other organizations, both inside and outside of the OC-ALC. Internal to OC-ALC, 76 Propulsion Maintenance Group (PMXG) has started their own exo trials modeled after our own. We have also consulted with both Cannon AFB and Minot AFB as subject matter experts, helping to advise them on specific mission requirements. Tinker AFB is an integral member of the DOD-wide Human Augmentation Users Group. Tinker collaborates with the Navy, Army, and other ALCs, by trading critical data on best practices for exoskeleton use. We have also informed the Combat Ready Airman Program’s requirements for aircraft mechanics, which will have positive ramifications for the entire Air Force upon implementation.

- 50% fatigue reduction in first 3 weeks of use
- Average task efficiency gains 10% resulting in $512K efficiency-related annual cost savings
- OC-ALC expected to save $1.4M injury cost avoidance for the first forty-nine (49) exoskeletons

Problem Statement
- Aircraft structural repair operations have a tendency to result in work-related musculoskeletal disorders of our civilian and active-duty mechanics, due to fatigue and repeated movements
- Many strain or sprain injuries caused annually by fatigue, poor ergonomics, or use of excessive force within the 76 Aircraft Maintenance Group
- Reduced mechanic effectiveness and increased manpower constraints due to mechanic absence and permanent injury
- Need improved processes and equipment to reduce standard ergonomic risk factors such as exerting excessive force, repeating same or similar movements, and maintaining postures that place stress on the body

Benefits
- Mechanics utilizing human augmentation have maintained an injury rate of zero since program implementation
- Reduced mechanic fatigue 50% on average
- Enabled better quality control through improved focus
- Increases tool stabilization during overhead processes
- Exoskeletons increased maintenance efficiencies per user by 10% on average with anecdotal reports of up to 50%, resulting in an annual cost avoidance of $512K
- Injury cost avoidance over $1.4M annually
- Exoskeletons have exhibited palliative effects in some of the 46 users, leading to increased mechanic retention

Technology Solution
- Industrial exoskeletons were identified as a possible way to improve mechanic ergonomics, reduce fatigue, and mitigate risks of injuries caused by stress and strain
- Three commercial systems from technology front-runners were evaluated and the best system was selected for trials
- B-1B Structures Repair Line was chosen for initial introduction and vetting of the technology
- Exoskeletons passively transfer weight from user’s arms and legs to the hips and core via mechanical cable technology
- Human augmentation, via exoskeletons, reduces musculoskeletal burdens while maintaining static postures and allowing for repeated movements

Utilization
- Shoulder Exo
- Back Exo
- Mass Utilization
- Graphic Utilization

sae.org/dod | Maintenance Innovation Challenge | 73
Problem:
Asphalt is the bedrock of our nation’s transportation and logistics infrastructure. USAF bases alone contain over 2.2 billion square feet of it, while the other branches of the DoD and the rest of the federal agencies have considerably more. Preservation of these asphalt runways, roads, and parking lots is significantly more cost-effective than replacement and reconstruction. Industry studies have confirmed that for every $1 invested in crack sealing, $6 is saved on future repair and maintenance work. However, current crack sealing methods are done through manually operated machinery and large numbers of personnel. A typical on-base asphalt repair crew consists of 6-14 CE Squadron members or 3rd party contractors capable of repairing 2-4 miles per day.

Technology:
The Robotic Maintenance Vehicle (RMV) is the only robotic pavement maintenance solution on the market. Complete with an:

- Integrated air blow-off system for cleaning out cracks
- Advanced vision system for volumetrically measuring and mapping the cracks
- FANUC robot with an adjustable arm to fill and squeegee the cracks

Plus, it can be altered in the future for smart pavement installation, pothole filling, etc. to become a versatile all-in-one maintenance solution!

Current Development Status:
The RMV is currently at TRL: 8 and in July 2022 was awarded a $750k AFWERX SBIR Phase II. We are already working with the U.S. Army and other federal agencies to expand to other branches.

Testing:
Successfully tested and demonstrated on miles of road and multiple parking lots, commercial and private airports, and both Tyndall and Luke Air Force Bases.

Over the past 2 years RMV has received:
- 2020 USAF Base of the Future Selection
- Top 50 US Army xTechSearch-6
- 2022 FANUC Innovator of the Year Award
- USAF Flightline of the Future Challenge – Airfield Maintenance and Repair
- 2022 TechConnect Smart Cities Startup Challenge Innovation Award
- 2022 TechConnect World SBIR Innovation Award
- 2022 Defense TechConnect Innovation Award
- 2022 Army Technology Innovation Awardee – Robotic Pavement Crack Sealer

Benefits:
- Can be used 24/7 (day and night) to minimize disruptions
- Moves up to 2x the speed of a traditional ‘trained’ crew
- Reduces the number of personnel required from 6-14 to 1-2
- Reduces the amount of training required – bases can be self-sufficient instead of relying on outside contractors
- Self-contained system – no other vehicles required
- Improves safety – workers not in harm’s way
- Reductions equate to a lower total cost of maintenance operations

Next Steps:
- Could have multiple R&D/Pilot units available by the end of 2022
- Altering for a smaller footprint all-electric vehicle (EV) chassis
- Working towards autonomy option for late-2023
- Looking to scale within the DoD and seek purchases of the first vehicles and support for additional funding from the TACFI/STRATFI program
Problem: The Gas Turbine Engine (GTE), Jet-A and Avgas (fuel) must be replaced. However, it cannot be replaced because it takes 15 to 20 years to introduce it into service, and longer. If the supply chain is disrupted, it puts engine CAMO and production at risk because material supplies – Ni-Alloys and composites are advanced technologies and Earth Metals are under Chinese control.

Technology: System, process and method to recover, build a stockpile, for reuse to make parts for engine overhaul.

Status: From 2014 to date, we have advanced the system and we need to move to the stage of extracting the materials for commercialization.

Performance claims: We have completed work on more than thirty commercial aircraft and about one hundred engines.

Next steps/Potential Benefits: We need to prove to government and industry that stockpiling Earth Metals is in the national interest.
Military and commercial aircraft are made of metals that are highly susceptible to corrosion, exposed to extreme heat & cold temperatures, water, sand, hydraulic and other liquids. When these aircraft are in the depot for maintenance, the maintenance cleaning processes are currently labor intensive and require hazardous chemical treatments. R Squared Chemicals is a North American distributor of Bio-Gen Active (BGA) chemicals that are safe for the environmental, simplifies transportation, safe for workers to use in handling, easy to store, and have no disposal restrictions.

What makes us unique from other cleaning chemicals? The BGA chemicals were formulated in Sweden by two chemists. The chemicals developed with biodegradable amino acids derived from milk whey. Whey, a high-quality and natural by-product from cheese manufacturing, is converted into Bio Gen Active® by a carefully designed microbiological process without using any additional chemicals. The amino acids help release hydrocarbon and/or scale from their attached surfaces in an environmentally friendly manner. Current BGA chemicals examples are Combi 202 which is effective for landing gear degreasing, descaling and de-rusting properties in one product. Our Combi products efficiently removes oil, dirt, rust and limescale in a single step. Another is Scale 130 effective on limescale and rust but mild to different surface materials such as Heat Exchangers. Optimized performance for efficient CIP (Cleaning In Place) of both oil and water borne systems. The products are also effective and gentle to skin, materials, and the environment.

We are dedicated to support our customers improving their level of safety for co-workers and at the same time reduce the environmental impact of their operations by using solutions based on the unique ingredient Bio Gen Active® – a 100% natural, health and environmentally optimized substrate based on fermented Whey.

Our proposed project is to perform the necessary certification testing to demonstrate we can meet MIL PRF 29602A, Performance Specification Cleaning Compounds, Parts Washer, and Spray Cabinet with Combi 202. American Airlines Landing Gear is the target application and then results will be shared with Hill AFB Landing Gear office. We will also connect to the Office of the Deputy Assistant Secretary of Defense for Materiel Readiness and propose possible expansion to joint Military and Commercial applications as a DoD Autonomy Initiative for industry (Boeing and American Airlines), academia participants (HBCU Alabama A&M), USAF to advance AFSC Depots and maintenance field levels for certifying environmental cleaning solutions. In addition, other applications include Heat Exchangers, Engine blades, and other critical parts. We rate our current chemicals as TRL -8 and once proven for military applications we can classify as TRL -9. It is estimated that cost reductions of our product, storage, disposal, and environment will be 50% or more.
Problem: Oil is an element indispensable for the operation of machinery, tanks, all types of military vehicles, vessels, helicopters, and airplanes. It is impossible to operate without oil, and the amounts of oil used are tremendous requiring constant resupply. This requires a perfect logistics system with tank trucks scheduled according to the hours operated. The oil changes are mandatory as preventive maintenance and the waste oil must be properly disposed, and its final disposition is going to cost additional money. Every year more than two billion gallons of oil are improperly disposed according to the Department of Energy.

The solution is our oil reclaiming Mobil equipment. (www.apfelbaumind.com). The technology has already been proved for over 15 years in different countries used mostly to reclaim transformer oil using no chemicals in the innovative process. We have basically four processes: moisture removal, dust removal, metal particles and the rest of the solids’ removal, and vacuum to remove all the gases. The reclaiming process removes the rest of the contaminants as paints, and the most important Sulphur removing under the standard values. The oil is left ready to make any type of oil just adding the additives depending on the type of oil required. Oil transformers require only antioxidant, while motor oil requires extra additives to reach the particular characteristics of the oil. This last part needs to be adapted and tested.

Benefits:
- Reduces the annual cost for mineral oil purchasing
- The logistics for oil supply can be reduced
- Oil Changes can be done on time because the reclaimed oil is made on the same site where is needed
- Final disposal for waste oil can be reduced dramatically, reducing the expenses for final disposal
- Compliance with the carbon reduction is part of the benefits
- The power transformers useful life should be extended
- The total savings could become an important additional budget consideration
A current problem in Defence is high inventory issues, dangerous goods management, and resultant inefficiencies. Technology involves adoption of hierarchy of control in chemical management.

Technology is currently used in Australia and has resulted in 80% reduction of inventory, elimination of dangerous goods and over 50 million dollars saving in Navy single platform. An example case study can be found at envirofluid.com/eco-friendly-chemicals-solve-sewage-systems-issues-aboard-lhds

Steps involve inventory review, analysis, reporting, onboarding of all parties, planning and implementation. This is normally done on an individual platform basis but can also be actioned as a comprehensive review. Activity can be conducted in partnership with Unichem Inc. unichemgroup.net depending on size of project.

Impacts of this proposed Innovation on maintenance can be significant, including but not limited to huge decreases in inventory management requirements, virtual elimination of dangerous goods, reduction in the need of mechanical controls (i.e., ventilation, bunding, storage etc.), administrative controls (i.e., safety statements, work packs, safety audits etc.) and PPE (i.e., protective clothing, googles, fire blankets and respirators etc.).

In spending time both eliminating and substituting chemicals of concern and multiple items of similar performance 80% of current time and expense incurred in administration, mechanical and personal protection equipment can be saved with spare resources then available for real Defense related activities. This inventory rationalization is not undertaken in full anywhere else in the world because there needs to be logistic specialists, engineering teams, safety officers, environment technicians, and other personnel that understand Defense brought together to enact a tangible result – this is what Envirofluid Inc. specialize in.

Maintenance improvements include redefined workplaces, reduced clutter, improved workflow, reduced sustainment requirements, elimination of toxic and dangerous work environments, lower carbon footprints, significant waste reduction, lower health issues and resultant claims etc. (we can expand on each item following further interest; however, the current 3000 limit doesn’t allow).

Technology is proved, current and ready for action.

The Innovation proposal is applicable across all areas of the DLA where chemicals are used.

Transition of technology is very viable for use by the DoD and full implementation will also result in a significant reduction of maintenance requirements – this includes the elimination of corrosion due to chemicals, hydrogen sulphide gas damage, damage to assets including rubbers, structural surfaces, pipework, radars, electronics etc. Overall, the greatest reward will be in personal safety by reducing exposure to toxic gases, fire, irritants, cancer causing substances and much more.

PROBLEM STATEMENT

Over many years and as a result of numerous Defense environments, the accumulation of chemical inventory and related equipment has become a logistical nightmare, with transportation, storage, and disposal being only few of the more obvious issues. Chemical safety, audits, EPA compliance, environmental guidelines, dangerous and toxic liquid and gas exposure, high compliance costs, asset damage (very significant), personal health, workplace risks, reduced equipment life cycles and even death are all problems that can be addressed via MRO Chemical and Equipment Rationalization. Excessive inventory results in high costs for warehousing, shipment (including deployment), difficult waste streams and huge manpower wastage due to unnecessary management.

TECHNOLOGY SOLUTION

Since 2000 Envirofluid have dedicated resources to Safer, Cleaner, Greener Working Environments. Fundamentally the inclusion of purpose-built chemical solutions for Defence will transform workplace safety, improve environmental outcomes and sustain morale, whilst reducing sustainment issues and improving maintenance practices.

Smart technology implementation will help preserve and care for Defence workforces through smart chemical applications that eliminate workplace hazards and environmental risk.

By conducting business in an environmentally responsible manner, it will also help to protect the earth and its natural resources and prevent climate change.

BENEFITS

- Reduce the annual cost to the DOD of asset damage causing by corrosive chemicals across all areas of Defense
- Significantly reduce personnel exposure to toxic gases and dangerous goods
- Extend the service life and performance of assets through reduced sustainment requirements and improve maintenance procedures
- Reduction in ‘cost of ownership’ due to reduced handling and storage requirements
- Sustainment of fewer chemical assets – up to 80% reduction
- Protect service personnel from dealing with toxic health issues
- More efficient deployment – case studies have shown over 50 tons reduction in weight on single navy vessel (equates to over 200 tons on typical aircraft carrier)
Maintenance solvents (and degreasers) across all sectors of Defense are typically dangerous both to human health and the environment, also carrying risks of fire, whilst being very expensive to manage.

Triple7 & Purasolve technology brings hope in providing products that work as well and better than the toxic lethal substances that they replace. Whilst the full product range is still in development, solvents that replace TCE, benzene, n-hexane etc. for purposes such as weapons cleaning, brake cleaning, parts cleaning, paint clean-up etc. are now readily available within the United States. Whilst the technology is still emerging departments such as the US Marines recently said they have nothing that works as well, like the weapons cleaner available to them currently.

Some solvents have recently gained MILPRF680 approval from SMI, however recognition and support from the US DoD and DLA would be required to help support the development of a full range.

Next steps would involve recognition, support, testing, integration, and adaption to DoD sustainment systems. Whilst pound for pound, alternative safety solvents are more expensive, the cost of ownership is significantly less. Savings are made in lower handling costs, less storage and transport issues, reduction of typical mechanical and administrative controls in use of solvents and above all greater human safety and environmental outcomes.

In Australia the Army, Navy and Airforce have eliminated solvent waste streams from Parts Washers, saved thousands of dollars on ventilation requirements, and reduced exposure to toxic chemistries. This is also currently enjoyed by the most welcomed US Marines based in Darwin. The range being developed is unique to Envirofluid as pioneers in safe solvent development, recently recognized by global companies such as Boeing who have signed a global distribution agreement for the developing product range. Prototypes are continually emerging on user demand however integration depends on major influencers and early adopters such as NATO and the US DoD.

Recent correspondence received from NATO is copied below however as a smaller enterprise we need help to continue this innovation process.

“Thank you for your insightful presentation, which I will take on board from central support to operations of codification system. I do observe numerous approaches to hazmat materiel in the nations, so the challenge we face was how to find a common grounds, and while we move to new environment of more flexible data exchange, these will be revisited. I see that your approach is an effective one, and same pattern could be undertaken in other countries, among 60 plus countries” - Codification Support Section Chief NATO Support and Procurement Agency | General and Cooperative Services Programme LB | L-8302 Capellen, G.D. Luxembourg

Adaptability across all sectors of Defense should be relatively easy and would typically have full backing from organizations such as OSHA an EPA etc.

Problem Statement

<table>
<thead>
<tr>
<th>Problem Statement</th>
<th>Benefits</th>
</tr>
</thead>
</table>
| Solvents and Degreasers used today were largely developed last century and have serious health and safety implications that are not dissimilar to the breadth of issues of asbestos which are struggled with globally. Whilst substances like MEK, Acetone, Toluene, TCE, n-hexane, chlorinated solvents etc. have been recognized as dangerous to human health and the environment, we have another global situation where it’s taking 40 years+ to adopt solutions to this serious situation. People are dying, climate change is happening, costs of conformance are escalating, litigation cases are increasing, and we can not continue to watch “whilst Rome burns” | • Reduce the annual cost to the DOD of compliance, litigation and cost of chemical / solvent ownership
• Preserve live and health of all Americans and DoD personnel
• Reduction of maintenance expenditure in terms of dollars and out of service costs with less asset damage
• Reduction of existing solvents volumes due to the innovation of lower evapourant and recyclable solvents and degreasers
• Sustainment of fewer assets due to streamlining of inventory – up to 80% reduction
• Protect service personnel from dealing w/toxic health issues and risks such as fire and fumes
• Safer deployment activities
• Conformance with all OHSA and EPA legislation
• Save billions on health expenditure and human trauma |

Technology Solution

The Triple7 and Purasolve technologies offer possibilities in innovation by taking renewable plant sources and fully recyclable solvents that have toxic levels down to parts per billion.

By taking the long way around with product development starting with safety, health and the environment in mind, whilst ensuring that final products save time, effort and cost, it is possible to provide next generation chemistry for today's needs.

Low vapor pressure solvents, with high flash points, that reduce consumption by up to 50 times, and also are readily recyclable ticks so many boxes be it ESG, HSE, WHS, Climate change, cost of ownership and professional stewardship.
Fleet vehicles in long-term storage at Marine Corps Logistics Command (MARCORLOGCOM) often experience issues with battery discharge. Vehicles with discharged batteries are unable to start, thus interfering with normal warehouse operations such as vehicle movement & fleet readiness. In addition, deep discharge permanently damages batteries causing unnecessary expense & labor in replacement & charging. In addition to battery diagnosis, matching battery discharge rate with a vehicle’s bumper number can aid in diagnosis of a vehicle’s overall electrical subsystem.

MARCORLOGCOM & Georgia Tech Research Institute have partnered through the University Affiliated Research Center (UARC) to explore ways to maintain readiness while vehicles are in storage. Our team is developing a battery monitoring system that plugs into a vehicle’s NATO slave port. This port provides a direct connection to a vehicle’s battery & is available on all US military vehicles across all services. Our device autonomously forms a secure Bluetooth Low Energy (BLE) mesh network & provides battery status tagged to a vehicle ID for all vehicles in a warehouse from a single access point. A prototype of this system has been demonstrated at MARCORLOGCOM in Albany, GA. During this test, we found that greater than 50% of the 38 randomly selected vehicles from a LOGCOM warehouse had low battery voltages. These low voltages not only impact fleet readiness, but also prevent functioning vehicles from being removed from the warehouse due to down vehicles & the tight parking configuration. In addition, BLE network tests were performed & we achieved sufficient signal strength for connectivity even with armored vehicles with NATO ports located inside the closed vehicle.

We have put together a 3-phase plan for demonstrating the near-, mid-, and long-term benefits of this system. Near-term, outfit an entire warehouse (approx. 100 vehicles) with this prototype system. The RFID & battery voltage of all of the vehicles will be available from a single access point, & a daily status will be generated. Mid-term, mesh self-localize & report battery condition, RFID, & geolocation for each vehicle. This will provide near real-time tracking & status data for all equipped platforms. Finally, long-term, autonomously recharge batteries via a ground robot providing continual service to the warehouse & remove the need for labor intensive maintenance operations.

In addition to the main goal of improved fleet readiness, large quantities of knowledge on battery & electrical systems will be logged. This will provide insight into improved maintenance schedules. Knowledge of which vehicles are not functional & where they are located will allow for the prioritization of vehicle repairs. These improvements will lead to 100% battery health while achieving labor reductions in the warehouse.

PROBLEM STATEMENT
- Fleet vehicles in long-term storage often experience issues with battery discharge.
 - Vehicles with discharged batteries are unable to start, thus interfering with normal warehouse operations and fleet readiness.
 - Deep discharge permanently damages batteries.
 - Detection of low-charge batteries and charging of these batteries is a labor intensive operation.
 - Undetected deep discharge causes unnecessary expense in both battery cost and labor to replace/charge batteries.
 - No current record keeping is performed to match battery discharge rate with bumper number of vehicle.

BENEFITS
- **Near-term:** Improved fleet readiness and the acquisition of knowledge on battery discharge characteristics. This will allow an improved maintenance schedule leading to longer battery storage life.
- **Mid-term:** Improved geolocation information on individual assets. Precise location data will also allow scheduling decisions to be made on battery maintenance. Is a single failed battery blocking the entire warehouse?
- **Long-term:** Improved warehouse operations leading to 100% battery health while achieving labor reductions.

TECHNOLOGY SOLUTION
We propose a custom solution that plugs into a standard NATO port to monitor battery condition.
- **Near-term:** Provides a secure Bluetooth Low Energy mesh network that provides battery status tagged to vehicle ID for all vehicles in a warehouse from a single access point.
- **Mid-term:** System will self-localize via the mesh to report vehicle location as well vehicle electrical system health. Can be integrated into McPIC infrastructure for vehicle reporting.
- **Long-term:** Integration with autonomous ground robot for autonomous recharge of systems that fall below a preset threshold.

Prototype initially tested in Albany, GA in September, 2022.

Battery State of Measured Vehicles

Measured battery status of 38 randomly selected vehicles in LOGCOM warehouse. Greater than 50% had low battery.
ENHANCED INSPECTIONS LEAD TO HIGHER QUALITY

TOM HARGETT
TIP Technologies
tom.hargett@tiptech.com
+1. 410.733.3480

One of the cornerstones of continuous improvement is a command of the quality inspection process. Criteria based inspection plans help meet regulatory requirements and workflows, depending upon where the product is in the manufacturing lifecycle. Online visibility and real-time tracking of incoming raw materials, parts, and subassemblies are critical to successful inspections. An effective quality management solution can process all information related to inspections and deliver a unified view of inspection results to key personnel.

Leadership often lacks detailed data or electronic access to inspection criteria. Manual translation of design documents is inefficient, prone to error, and often results in inconsistent quality. An enhanced inspection process will eliminate paper documents, standardize quality, and increase efficiencies throughout the maintenance, repair, and overhaul product lifecycle. A software solution with Characteristic Management functionality further simplifies the generation of inspection criteria and puts manufacturers in a position to deliver higher quality products.

The Characteristic Management functionality available within the TIPQA Quality Management Solution uses Optical Character Recognition (OCR) technology to scan 2D images and create intelligent bubble drawings by extracting Geometric Dimensioning and Tolerancing (GD&T) data for import. The scanner detects dimensions and tolerances for each feature included in a part drawing to save countless hours and reduce the overall cost of quality. Standardized characteristics can be translated automatically into inspection criteria for In-Process, Receiving, or First Article Inspections. Balloons can be saved as an overlay to the application to allow the user to save their progress and return to the task. Deadlines can be enforced using email notifications and escalations.

TIPQA Characteristic Management keeps suppliers on the same page. Balloons diagrams, part requirements can be standardized to ensure design specifications and industry standards are followed throughout the supply chain. Suppliers can manage inspection plans and generate standardized reports. Inspection and quality data can be integrated with manufacturing execution systems and enterprise resource planning (ERP) systems for a complete view of the inspection process.

TIPQA automates the process of recording inspection/test results of material assigned to Work Orders in manufacturing or engineering operations. The system maintains a history of inspection results at the part number or revision level. TIPQA eliminates lost paperwork, improves accuracy by validating data against master records, and speeds the processing of inspection results.

Every inspection facilitated with a TIPQA Quality Management Solution is carried out with the goal of simplifying the manufacturing process, improving accuracy, and exceeding regulatory and compliance requirements while providing a complete audit trail. With these objectives in mind, risk to the organization will be significantly reduced and overall quality will improve.

PROBLEM STATEMENT
- Defense leaders lack detailed data or electronic access to inspection criteria.
- Manual translation of design documents is inefficient, prone to error, and often results in inconsistent quality.

BENEFITS
- Standardize inspection criteria throughout the supply chain
- Maintain a digital archive of documents and inspection plans
- Automatically extract mfg. & inspection requirements from a 2D image or PDF
- Characteristics can be linked to the part/revision combination
- Link criteria with Form 3 of the AS9102 FAI report
- Track industry compliance by part
- First receipt and FAI AS9102 reporting. Create custom FAI, PPAP, or other commonly used reports
- Ensure part quality and increased delivery times

TECHNOLOGY SOLUTION
- The TIPQA Characteristic Management functionality simplifies the generation of inspection criteria and puts manufacturers in a strong position to deliver higher quality products
- Using balloons, part requirements can be standardized to ensure design specifications and industry standards are followed throughout the supply chain. Suppliers can also manage inspection plans and generate industry standard reports as needed.
- Supports various types of inspections including Receipt Inspections, Source Inspections, Purchase Order Inspections, and Production Inspections

GRAPHIC OR IMAGE

One of the cornerstones of continuous improvement is a command of the quality inspection process. Criteria based inspection plans help meet regulatory requirements and workflows, depending upon where the product is in the manufacturing lifecycle. Online visibility and real-time tracking of incoming raw materials, parts, and subassemblies are critical to successful inspections. An effective quality management solution can process all information related to inspections and deliver a unified view of inspection results to key personnel.

Leadership often lacks detailed data or electronic access to inspection criteria. Manual translation of design documents is inefficient, prone to error, and often results in inconsistent quality. An enhanced inspection process will eliminate paper documents, standardize quality, and increase efficiencies throughout the maintenance, repair, and overhaul product lifecycle. A software solution with Characteristic Management functionality further simplifies the generation of inspection criteria and puts manufacturers in a position to deliver higher quality products.

The Characteristic Management functionality available within the TIPQA Quality Management Solution uses Optical Character Recognition (OCR) technology to scan 2D images and create intelligent bubble drawings by extracting Geometric Dimensioning and Tolerancing (GD&T) data for import. The scanner detects dimensions and tolerances for each feature included in a part drawing to save countless hours and reduce the overall cost of quality. Standardized characteristics can be translated automatically into inspection criteria for In-Process, Receiving, or First Article Inspections. Balloons can be saved as an overlay to the application to allow the user to save their progress and return to the task. Deadlines can be enforced using email notifications and escalations.

TIPQA Characteristic Management keeps suppliers on the same page. Using balloons diagrams, part requirements can be standardized to ensure design specifications and industry standards are followed throughout the supply chain. Suppliers can manage inspection plans and generate standardized reports. Inspection and quality data can be integrated with manufacturing execution systems and enterprise resource planning (ERP) systems for a complete view of the inspection process.

TIPQA automates the process of recording inspection/test results of material assigned to Work Orders in manufacturing or engineering operations. The system maintains a history of inspection results at the part number or revision level. TIPQA eliminates lost paperwork, improves accuracy by validating data against master records, and speeds the processing of inspection results.

Every inspection facilitated with a TIPQA Quality Management Solution is carried out with the goal of simplifying the manufacturing process, improving accuracy, and exceeding regulatory and compliance requirements while providing a complete audit trail. With these objectives in mind, risk to the organization will be significantly reduced and overall quality will improve.
If the manufacturing sector in the United States learned anything from COVID-19, it’s that we must better control supply chains. Additive manufacturing is proving to be an effective solution for the fabrication of complex critical parts faster, locally, and especially on-demand. One challenge, however, is that you must have a 3D CAD file for the parts you want to 3D print and many legacy parts, especially replacement parts on shelves in warehouses, do not have such technical information.

Enter the Part Automated Scanning System (PASS), from Direct Dimensions. This new innovation is a high-speed 3D scanning machine. Think photocopier for physical items – such as small parts, collections of artifacts, museum objects, footwear, and much more. You simply place an item on the machine and in 2 minutes the part is automatically captured. Then in minutes you can view the scanned part in 3D online. You can roll it around, zoom in/out, understand its shape, components, even materials, and you can read text or markings since the 3D has high resolution color. Industry neutral files can then be shared or stored with others anywhere to make decisions. PASS enables Industry 4.0 just in time manufacturing right here in the U.S.

PASS was originally developed for the DLA (Defense Logistics Agency) so they can scan 1,000’s of parts directly in their warehouses to build a database of from which decisions on fabrication, such as additive manufacturing, can be made.

System Description: Direct Dimensions, Inc. has designed and developed PASS: Part Automated Scanning System for high-capacity automated 3D scanning of objects. PASS allows continuous 3D digitization of small objects, parts, artifacts, and collections. The semi-portable scanner system consists of a tower structure with (16) high-resolution DSLR cameras, integrated lights, a custom table and turntable, and a computer controller for operations, metadata, and review.

Objects placed on the turntable are automatically photographed nearly 400 times from different angles over in 2 minutes. The 2D images are then automatically converted into a dimensionally accurate textured 3D mesh model using a process known as photogrammetry.

The 3D digital models and object metadata can be uploaded to a database for cataloguing and visualization interactively in 3D. The major system components are:

- Camera tower structure with (16) high-resolution DSLR cameras
- Integrated light system
- Scanning table with turntable and backdrop
- Operator workstation computer
- Data server
- High-speed processing computer

Functional Specifications:

- Maximum object volume: 16” x 16” x 16”
- Accuracy: <1 mm, as low as +/- 10 microns
- Capture time: approx. 2 minutes
- Post-Processing time (unattended, in background): approx. 7 minutes

PROBLEM STATEMENT

- Digital Twins are digital data for problem solving and avoidance.
- 3D scanning is about capturing objects and spaces in the real world to create 3D data for design, analysis, visualization, and manufacturing.
- With so much demand for digital-based information for supply chain management, and with so few items in the physical world in 3D digital form, 3D scanning enables engineers, designers, and manufacturers to better control supply chains for digital-based replacement parts.
- How do you manage the supply of physical parts for maintenance?
- How do you get your physical parts into 3D for subsequent design, analysis, visualization, or manufacturing?
- In addition, what challenges do you have solving dimensional issues with parts, assemblies, structures, vehicles, gear & equipment?

BENEFITS

- Library of Reference Scans: Provides a highly versatile 3D digital model library of what a good part looks like as if holding in hands.
- Ideal for AI/ML Analysis: Dimensionally accurate models can be queried for suitability for AM, reverse engineering, similar part comparison, remote stock analysis, counterfeit, conformance, etc.
- Remote Inspection: Product evaluators can conduct dimensional testing for suspected non-conforming or counterfeit part analysis.
- Identify Unknown Parts: The resulting parts database can be queried against other known databases to detect similar designs, common features, part identification, manufacturing markings, etc.
- Training and Simulation: Having parts in digital form with color provides high quality models for training & simulation applications.

TECHNOLOGY SOLUTION

- Direct Dimensions has over 25 years of deep domain expertise with 3D scanning across virtually all industries and applications.
- Specifically for the DLA, we developed a rapid automated 3D scanning solution for part 3D digitization with dimensional accuracy and color.
- The system consists of a tower structure with 16 high-resolution DSLR cameras, photography lights, and a custom turntable.
- Objects placed on the turntable are automatically photographed from hundreds of different angles over a span of only two minutes.
- The 2D photos are then automatically converted into a dimensionally accurate and textured 3D mesh model using photogrammetry.
- The system is self-contained and easily transportable and includes a custom-designed cart capable of fitting through standard doors.

Physical Specifications:

- System footprint: 9 ft x 5 ft x 8 ft
- Output: OBJ mesh file + JPG texture file + flat-file metadata table
- Additional metadata fields customizable upon request
Due to various aspects of composite repair processes that have significant safety impacts, they must be executed with controlled environments with properly trained technicians to ensure repair integrity and reliability. An integrated robotic inspection and repair system called Joint Autonomous Repair Verification and Inspection System (JARVIS II) was developed for improving mission readiness through enhanced quality and consistency. This is a modular system that can be either field- or depot-deployable.

For demonstration purposes, UH-60 Black Hawk blade repair was focused, but the system can be modified to handle large composite structures. WSU/NIAR researchers engaged with Army aviation sustainment engineers and depot personnel for developing protocols for nondestructive inspections (NDI), composite repairs, and workforce training. Due to stringent load-balance requirements on rotor blades, the repairs must be carried out with minimum impact to functionality. However, current repair processes often lead to blade balancing issues and rotor failures. According to the current rotor management program, the main rotor blades are removed for routine inspections after a pre-determined number of hours of operations. The demand for the blades as well as the stringent structural and safety requirements warrants a need for novel automated techniques to accomplish routine inspections and repairs in a timely manner so that a sufficient number of blades are available on operational readiness to support fleet during blade removal for repair and routine inspections.

JARVIS II is a composite inspection and repair system to improve mission readiness through integration of advanced technologies.

PROBLEM STATEMENT

The demand for rotor blades as well as the stringent structural and safety requirements warrants a need for novel automated techniques to accomplish routine inspections and repairs in a timely manner so that a sufficient number of blades are available on operational readiness to support fleet during blade removal for repair and routine inspections.

Due to various aspects of composite repair processes that have significant safety impacts, they must be executed with controlled environments with properly trained technicians to ensure repair integrity and reliability. JARVIS II is a composite inspection and repair system to improve mission readiness through integration of advanced technologies.

TECHNOLOGY SOLUTION

An integrated robotic inspection and repair system called Joint Autonomous Repair Verification and Inspection System (JARVIS II) was developed for improving mission readiness through enhanced quality and consistency. This is a modular system that can be field- or depot-deployable. Since the system is modular, various inspection technologies were integrated; repair modules include milling head for damage removal and scarfing, dust collection system to maintain particle count, atmospheric plasma system for surface preparation, goniometer to quantify the surface for wettability prior to repair, and a thermal management system for heat blanket for curing composite patch.

BENEFITS

Integration of Modern Technologies and Robotics

- Automated process aided by artificial intelligence increase productivity and improve the quality & consistency
- Aid current sustainment by reducing Out of Reporting (OOR) and improve speed to fleet
- Digital framework for Model-Based Systems Engineering and Digital Thread to improve fleet readiness
- Because all the information is captured digitally, this data can also be used to ensure repair integrity, generating supplementary documents required for airworthiness approval, and product lifecycle management (PLM)
- Digital data for optimizing subsequent load balancing and developing a Digital Twin, a virtual representation of each blade with modifications.

JARVIS II is now operational at Corpus Christi Army Depot (CCAD)
MIXED REALITY (MR) FOR VISUAL INSPECTIONS OF COMPOSITE STRUCTURES

KONSTANTYN SHYSHKIN
Spiral Solutions Corp
k@spiral.technology
+1.617.915.3157

Problem: When defects are mis-recorded engineering disposition is delayed, visibility of the resolution status decreases, and quality suffers. Paper records reduce transparency further and make any trend analysis impossible. Knowing the exact location of the problem therefore is key in depot overhaul operations.

Solution: Proposed solution increases speed and accuracy of quality inspections across the maintenance lifecycle of the aircraft. Our Mixed Reality (MR) tool enables quality inspector to directly tag defects on the large structures and get them inserted in the digital twin.

Benefits: Spatial markers give you complete and accurate quality records, real-time digital disposition, a holistic map of every part’s status.

How it works: We introduce Virtual Marker — a holographic cube referencing defect on the part or equipment. Created and accessed via HoloLens2 headset markers contain spatial information about the defects as well as pictures, videos, and technical parameters. Spatial marking crates virtual layer of information over the physical objects. Markers are persistent. When placed on a defect marker “remembers” its location, size, and distance to other objects. This provides accurate defect location to the repair crew and helps tracking status of the repairs.

Markers provide contextual instructions. Next steps in the inspection process depend on the defect location and type. Marker’s spatial awareness allows providing only relevant repair instructions and prompts picking right tools.

1. Accurate Defect Location. Engineers see every defect mapped out in real time, through their desktop view. From here, they can create heat maps, based on aggregate data, and see a clear picture of where problems most frequently occur.

2. Faster Defect Resolution. Recording problems digitally in real-time accelerates engineering disposition and improves coordination between technicians on-site and engineering support. Knowing the precise location of all the defects removes ambiguity from the repair process while senior management has complete transparency of the resolution status.

3. Seamless Communication with Engineering. Engineers directly connect with operators via video call to provide remote assistance and feedback, if needed. Operators receive instructions directly to their headset, for regular problems. Communication becomes entirely digital, increasing efficiency and reducing errors!
Here we present a Frequency-Modulated Continuous Wave (FMCW) radar-based cable remaining useful life (RUL) estimator. It can detect and locate cable hard and soft faults, and estimate the cable RUL. The system uses the truth that a discontinued cable impedance reflects the coming RF signal. It is constructed with an FMCW radar, an impedance matching network and a lead cable, a cable degradation model, and a deep learning (DL) based data processing module.

The FMCW radar transmits a chirp down to the target cable through the impedance matching network and the lead cable, receives the reflected signal from the target cable, converts it to the base band, and collects baseband signal samples. The samples are then fed to the DL-based data processing module for cable faults detection and localization, and cable RUL estimation with the support of the cable degradation model.

The impedance matching network and the lead cable minimize the impact of transmitter (Tx) leakage and the interface reflection, and a high detection sensitivity for soft fault sensing is obtained. Various grades cable faults are modeled in the cable degradation model for the DL model training for cable faults detection and localization, and cable RUL estimation. Its main application is for cable assembly diagnosis.

The advantages of the proposed FMCW radar-based RUL estimator include (1) high sensitivity, (2) great noise impact reduction, (3) high accuracy of fault detection and RUL estimation with the cable degradation model and DL algorithm.

PROBLEM STATEMENT

- Problem:
 - Over 1,000 aborted missions, over 140,000 Non-Mission-Capable (NMC) hours per year due to wiring incidents
 - Two in-flight electrical fires related to wiring failures per month
 - 43% Air Force aircraft mishaps or accidents relate to the wiring interconnection system

- Technique and current sensor
 - Prognostic and Predictive Maintenance (PPMx) estimates what might go wrong, and when
 - Cable analyzers inject signal at one end and measure responses at the other end of a cable. Large, heavy, two ends sensor

- Proposed sensor
 - A handheld, single end (inject signal and measure response at one end of a cable) sensor provides performance and efficiency

BENEFITS

- A low SWaP handheld sensor
- Detect and locate cable hard faults (open and short circuits)
- Detect and locate cable soft faults (e.g., coaxial cable shield broken, twisted and parallel pair cable deform, wire corrosion, connector pin fault, insulation degradation)
- Classify cable degradation level with the support of a cable degradation model
- Estimate cable remaining useful life / when to repair or replace the cable

TECHNOLOGY SOLUTION

- A Frequency-Modulated Continuous Wave (FMCW) radar-based cable remaining useful life estimator
- An FMCW radar – measure cable impedance change generated by faults/aging, cable insertion loss, single non-paired wire length; sample at baseband frequency with a low sampling rate
- An impedance matching network and a lead cable – reduce interface reflection and push Tx-leakage away from target signal
- A cable degradation model – mapping cable fault/aged condition to cable remaining useful life
- A ML based data processing module – detect and locate fault, and estimate cable remaining useful life
DEFEAT CHARACTERIZATION OF NAVY SHIP STRUCTURES WITH BROAD SPECTRUM ACTIVE ULTRASONIC MODE IMAGING

DR. STEVE ZIOLA

Antech Systems, Inc.
Steve.Ziola@antechsystems.com
+1.303.913.0959

Problem Statement: Current NDT&E methods used by Naval shipyards, such as Ultrasonic Testing, to inspect ship structures for corrosion and defects are effective but are time consuming, costly, and are found lacking when confronted by interference, inaccessibility, and/or confined spaces. There are many situations where Shipyards are required to remove coatings and/or unship components all together to ensure adequate inspections can be accomplished. There is a need for a more effective and efficient method to inspect large areas of ship structures for defects without having to remove coverings or components.

Innovation: Antech Systems is pioneering the development of a new technology and approach for analyzing propagating waves in plate-like ship structures to identify, locate, and characterize defects, such as corrosion, voids, and disbonds. The new approach is called Ultrasonic Mode Imaging (UMI), and it represents a major step forward in signal processing and analysis in both passive and active applications because it is physics-based, uses the entire frequency spectrum, and leverages higher-level guided wave modes to provide detailed information about the defects. It uses novel image analysis routines to overcome the effects of overlapping wave modes, dispersion, and reflections and presents more accurate results in an automated manner.

Status: Currently, Antech Systems is building the sensors and electronics hardware needed for the active UMI system to achieve desired monitoring ranges via a NASA SBIR project. Development work needed to prove the viability of the technology includes developing a mechanical source input device to introduce broadband guided waves into the structure, ultrasound tomography software needed to turn the UMI measurements into images of the structure to show the location of the defects, and experimental verification of our approach.

Supporting Tests: Antech Systems has conducted experiments with thinned areas on a 4’x8’ aluminum plate which show an ability to detect about a 1% thickness reduction even under a covering with current commercially available sensors and electronics. With the new NASA hardware, we are demonstrating an ability to quadruple the range, which will make the system cost effective and efficient for large ship structures.

Next Steps: The next steps are to find a sponsor willing to invest in this technology to complete the development work required and build a prototype system for field testing. We estimate the investment required is about $500K, and it would require about a year to complete the work.

Benefits: The active UMI system once developed would inspect large areas of ship structures in less time than current NDT&E methods and without having to remove interferences, coatings, and coverings. Such a system has the potential to significantly reduce maintenance costs and schedules, extend the life of Navy assets, and provide the warfighter with more reliable structures, components, and systems.

PROBLEM STATEMENT

- Current NDT&E methods used by Naval shipyards, such as Ultrasonic Testing (UT), to inspect ship structures for corrosion and defects are effective but are time consuming, costly, and are found lacking when confronted by interference, inaccessibility, and/or confined spaces.
- There are many situations where Shipyards are required to remove coatings and/or unship components all together to ensure adequate inspections can be accomplished.
- There is a need for a more effective and efficient method to inspect large areas of ship structures for defects without having to remove coverings or components.

TECHNOLOGY SOLUTION

- Develop a portable, robust, efficient, and effective active Ultrasonic Mode Imaging (UMI) system to perform NDT&E of Navy ship structures for corrosion, voids, and disbonds under coatings and coverings.
- Leverage an enhanced passive monitoring system being developed under a NASA SBIR contract to boost monitoring range and automated imaging analysis software being developed by Antech Systems to better characterize defects with higher-level wave modes.
- Develop a robust mechanical input source device to excite broadband signals in the structure that propagate further.
- Develop ultrasound tomography software needed to turn the UMI measurements into images of the structure to show the location of the defects.

BENEFITS

- The active UMI system once developed would inspect large areas of ship structures in less time than current NDT&E methods and without having to remove interferences, coatings, and coverings.
- The system would provide more complete coverage of the structure and characterize the defects with more accuracy and fidelity since it leverage higher-level wave modes which contain rich information about the defective condition.
- Such a system has the potential to significantly reduce maintenance costs and schedules, extend the life of Navy assets, and provide the warfighter with more reliable structures, components, and systems.

![Inspection Rays](image1.png) ![Tomographic Reconstruction](image2.png)
PROJECT GUSTAV | 3X COMMUNICATION CAPABILITY

RYAN AMADOR & MATTHEW CONNELLY
52nd Fighter Wing
ryan.amador.1@us.af.mil
+1.314.452.6187

Backdrop: The pandemic taught us that technology exists to create networks that facilitate smooth communication. But for the last four decades, our field maintainers have not benefited from those same technological advances. That changes with Gustav.

Problem Statement: Since 1981, field maintainers servicing aircraft across the fighter community have relied on sturdy analog communications with our pilots. The way we communicate is solid and reliable but there is a problem. Bandwidth is limited to only one person who in turn forwards that message audibly in a deafening environment. The situation described affects a quarter of our Air Force population and half of our Air Force fleet.

Solution: The Gustav Connector is an inexpensive communication reliability innovation that triples pilot-to-field-maintainer bandwidth across the joint force fighter community. On the job training as well as missions requiring radio silence will benefit from this innovation.

Capability: This innovation triples communication capability for field maintainers servicing fighter aircraft. This affects both training and operations by disintermediating forward-transmission of messages from the aircraft to field maintainers. It is true that splitters and adapters are used in some combat aircraft communication solutions. A similar locally manned idea was tried in 1981 (Locally manned means that it was built in a specific place). This innovation shares some similarities to the 1981 rendition but produces a significantly improved signal quality and eliminates hissing noises. The Gustav Connector offers the user no signal degradation by using a polymer shielding and equalizing the wire gauge across the entirety of the adapter.

Technical maturity: Eighteen have been demonstrated and are in service as of August 2022, 17 are Air Force, and one is Navy. Additionally, one was used to confirm compatibility with Portuguese combat aircraft. The tech specs are ready and already accepted into Technical Order (TO) 1F-16CJ-2-23GS-00-1-WA-1 for use with Air Force F-16 aircraft. No manufacturer produces this innovation yet.

Compatibility: All Sister Branches and all International Partners that use US manufactured Combat Aircraft.

Cost: Built internally at $200 Per Unit:
- $340K Air Force (1.7K Aircraft)
- $420K Joint Force (2.5K Aircraft)

Next Step: If chosen, our Air Force will not only trail-blaze this capability for itself, but also the joint force and 25 partner nations that use US manufactured fighter aircraft. This would be a quick win for our Air Force and the DOD writ large if used to help pilots more clearly communicate with their field maintainers.
Adhesively bonded nutplates are increasing employed in the fabrication of aerospace structures with some aircraft containing tens of thousands. They find utility in assemblies where two-sided access is not possible and/or where maintenance access panels are found. In operational units, nutplates that tend to fail most often are those used to secure panels that are frequently removed & replaced for maintenance purposes. The inability of maintainers to rapidly, effectively & safely remove failed nutplates & reinstall new ones has negatively impacted aircraft mission capable rates & been a top maintenance driver for two weapons systems.

AFRL/RX’s Structural Materials Evaluation Nonmetals team (including on-site contractors) worked with an Original Equipment Manufacturer (OEM), an injection molder, a major abrasive supplier, & multiple operational units to address this challenge. The AFRL/RX team developed, in-house, an innovative & novel nonmetallic reverse counterbore cutters & associated equipment (aka Adhesively Bonded Nutplate Installation and Repair (ABNIR) kit - a suite of over 40 tools), that reduce the time to prepare aircraft structure for bonding new nutplates.

In the process of developing these tools and to ensure that they were going to be put into the maintainers’ toolboxes, the AFRL/RX team:

- Beta tested prototype tools with maintainers from all three Services using feedback to drive tool & procedure improvements
- Worked with a plastics injection molder in the design of molds to be able to economically produce the cutters
- Worked with tool manufacturers to produce & transition “associated” equipment into commercial off the shelf (COTS) items
- Worked with a major abrasive supplier in designing new abrasive pads for critical final prep of aircraft structure, and transitioning into a COTS item
- Developed a hands-on training course for maintainers, field-service engineers, & OEM personnel in the proper utilization of these tools
- Developed operations manual detailing the proper steps for using these tools – was foundational document for creating Technical Orders for two weapon systems & part of an OEM’s process spec in aircraft production & depot maintenance

- Trained hundreds of maintainers from the three Services
- Worked with a supplier to ensure successful transition of ABNIR Kit into a COTS item

The use of the ABNIR kit will result in a five-fold reduction in the time to remove remnant material from aircraft structure during nutplate replacement. The resultant better-prepared new bond surface provides superior bonds & mitigates premature nutplate failures thus reducing future maintenance workload. End result is increased readiness of 5th generation aircraft (and future platforms) to deter near peer adversaries.

Next step: have broader adoption of the ABNIR kit as an enterprise solution for aerospace structures that utilize bonded nutplates – could entail development of alternate sized cutters for specific platform needs.

PROBLEM STATEMENT

- Fifth generation aircraft utilize bonded nutplates, upwards of 20 to 30 thousand per aircraft, to secure fasteners when there is limited or no access to the backside of the fasteners at the time of installation (e.g., for maintenance access panels and covers)
- These bonded nutplates are frequently damaged, for a variety of reasons, and need to be rapidly replaced to maintain operational tempo
- The inability of maintainers to rapidly, effectively and safely remove failed bonded nutplates and reinstall new ones at operational units has been a significant negative maintenance driver for these platforms

BENEFITS

- Rapid Bonded Nutplate Replacement kit (aka ABNIR kit)
 - Obtained five-fold reduction in the time to remove remnant adhesive and sealant from aircraft structure during repair
 - Better-prepared surfaces with quality assurance test ensures superior bonds & mitigates premature nutplate failures
 - AFRL/RX procedures incorporated into Original Equipment Manufacturers’ (OEMs) process specification for production as well as in several AF Maintenance Technical Manuals
 - Tools and procedures being incorporated into future platforms
 - Adhesive cure prototype further reduces repair to 5 hours
 - Increased readiness of 5th generation and future aircraft to deter near peer threats; supports DAF Op’l Imperatives 5 & 7

TECHNOLOGY SOLUTION

- AFRL/RX developed a suite of 40+ tools (cutters, swivels, mandrels, wrenches, etc.) to enable rapid, safe, and trusted surface prep of aircraft structure for nutplate repair (aka the ABNIR® Surface Prep Kit)
- Beta tested tools with maintainers from all three Services, using feedback to drive tool & procedure improvements
- Trained hundreds of field maintainers in proper operation of tools as they deployed to operational units
- Worked with plastics injection molder & tool manufacturers to transition tools & kits into commercially available items
- Developed training course and Distro A operational manuals

*Adhesively Bonded Nutplate Installation and Replacement

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. Case Number: AFRL-2022-4673
Avionics repair is hindered when manufacturers can no longer supply circuit card assemblies or their associated technical data packages (TDP). Reverse engineering (RE) of printed circuit boards (PCBs) is used to yield form, fit, & function replacements needed to maintain fleet readiness. The current process for reverse engineering PCBs is a destructive ‘sand and scan’ approach. A PCB is mechanically sanded to reveal internal circuit layers. PCB circuit layer images are obtained by optical scanning and used as a template in PCB design software over which technicians add digital traces. This process is costly in terms of effort, skill, and training needed to do the job, loss of rare physical assets, and poses environmental risks from sanding PCBs made of fiberglass and solder.

402 Electronics Maintenance Group’s Reverse Engineering Avionics Redesign and Manufacturing Innovation Center has been working in partnership with Tetrahive Technologies on a SBIR project to demonstrate a technology solution using non-destructive X-Ray Tomography imaging combined with novel software tools to yield a digitized process to facilitate semi-automated generation of TDPs for legacy electronics. Technology elements include a) XRT hardware specification & data acquisition settings for relevant environment PCBs, b) a custom imaging application with tools to semi-automatically extract TDP data, and b) ability to interface with existing PCB RE software used by various DoD agencies for further TDP editing and validation.

Test article PCB specimens representing the relevant environment of the USAF PCB assets were created and then XRT hardware and settings were determined by testing. Seven different PCB designs with features ranging from 5 mils to 20 mils were tested. The specimens ranged in size from 3”x4.5” to 9”x9”, circuit layer counts from 4 to 8, and either a Pb-based HASL or OSP finish to assess the ability of the X-ray hardware. Over 20 separate scans were performed by industrial XRT service providers and the data compared for RE suitability. An XRT system recommendation and scan documents for the variety of boards tested were developed.

Phase II also developed a prototype CT imaging software that supports automatic detection of the PCB stackup and flexure. Non-destructive slices which follow the PCB flexure and are placed at the stackup locations. Correcting for board flexure has been a challenge in PCB RE as the slightest degree of flexure in PCBs makes it difficult to obtain images distinguishing individual circuit layers. The software also has functions to extract TDP data from the PCB and supports interfacing with existing PCB CAM/RE tools via exporting circuit layer raster and Gerber images.

The project is transitioning from prototype to technology demonstration, where it is being exercised on two PCBs. RE for these assets is planned to be half the cost and time of current destructive techniques. This digitized process also supplies intangible benefits such as eliminating the risk of losing rare assets during RE, reduction of ‘key man’ risk and enhancement of repeatability, automation, and archival functions through a digital process.

PROBLEM STATEMENT

- Avionics repair is hindered when original equipment manufacturers can no longer provide circuit card assemblies or associated technical data packages (TDP). Reverse engineering (RE) of printed circuit boards (PCBs) is often required to yield form, fit, & function replacements needed to maintain fleet readiness.
- Current PCB RE process is a painstaking destructive ‘sand and scan’ approach. A PCB is mechanically sanded to reveal internal circuit layers. Individual PCB circuit layer images are obtained by scanning and using as a backdrop in PCB RE software over which technicians add digital traces. This process is costly in terms of effort, skill, and training needed to do the job, loss of rare physical assets, and poses environmental risks from sanding PCBs made of fiberglass and solder.

TECHNOLOGY SOLUTION

- Small Business Innovation Research project/partnership between Reverse Engineering Avionics Redesign and Manufacturing and Tetrahive Technologies to find and raise the Technology Readiness Level of a non-destructive solution which can digitize and eventually automate the process.

BENEFITS

Tangible Return On Investment considerations:

- Current Phase III ‘real-world’ project on 2 REARM PCB assets
- PCB RE done at half the cost in half the time of current on-site destructive techniques and processes

Intangible benefits:

- Eliminates risk of losing rare electronic assets during RE
- Reduces ‘key man’ risk needed to destructively de-layer PCBs
- Digitized process enhances repeatability, automation, and archival
 - PCB RE activities can be done cheaper
 - PCB RE activities can be done faster
- PCB RE activities can be done with less risk (key-man, non-destructive, digital processes)
 - DoD can have increased capacity for performing PCB RE
Reliability Improvement (Hardware)

Portable Scarfing Composite Structure Repair System

Jeswin Chankaramangalam
Wichita State University
+1.316.677.1794

Current practices for composite structure repair are highly complex, labor intensive, have high lead times, and lack digital continuity or virtual documentation. In order to repair a composite, the damaged section must be completely machined or sanded off, which is typically done by hand making it labor intensive and inaccurate. Then to get the required repair ply profiles, a transparent medium such as Mylar is used to manually trace out the missing composite section. With the profile of the damaged section created, several iterations of individual plies are cut and assembled to find a combination that fits the damaged section. This process requires highly skilled labor and even then involves a lot of estimation and non-value add verifications. In order to vastly improve this process, the National Institute for Aviation Research (NIAR), in partnership with American GFM, proposes their patented automated composite repair and virtual documentation process.

The fundamental difference between traditional and NIAR's composite repair procedures is the use of a fully virtual and automated process. This process begins by having a complete digital version, or Digital Twin, of the structure that will be repaired so that damage can easily be found and tracked. When damage is found, either by automated or manual NDI/inspection, it must be scanned to initiate the repair process. The area that should be removed is sent to an automated computer numerical control (CNC) mill that can attach to any surface of the structure. While the damaged area is being removed, the required plies are digitally generated then cut by a CNC ultrasonic ply cutter and stacked. The only part of the process that is currently manual is the placement of the plies and its curing setup onto the damaged section. Finally, after automated sanding of the repair patch, NDI inspection is used again to guarantee compliance and the data is added to the digital twin to ensure virtual documentation.

The process to create Digital Twins of vehicles is very mature and is being performed at NIAR for purposes far beyond composite repair. The software that takes the machined damage section scan and generates the required ply shapes is fully developed and has been demonstrated with a few different complex surface profiles. NIAR has also fully developed an automated robotic sander that scans the surface for parts that require sanding. This robot and accompanying software could easily be adapted to include a CNC system in order to scarf damage. In summary, NIAR and AGFM’s composite repair process will vastly improve composite repair by making it more reliable, digitally traceable, and efficient.

Problem Statement

- Current practices for composite structure repair are highly complex, labor intensive, have high lead times, and lack digital continuity or virtual documentation.
- Current composite repair processes (especially scarfing) are done by experts that require decades of experience for damaged areas that are complex.
- Digital traceability and automated shape creation of the bonded patches (repair plies and adhesive) is not currently available due to the manual and cumbersome nature of the process.

Benefits

- Automated process ensures reliability and accuracy.
- Digital Twin with NDI data of the repaired section ensures digital continuity and virtual documentation.
- The automated scarfing and ply generation/cutting is a proven and patented technology.
- Successful repairs have been performed on complex non-planar surfaces.

Technology Solution

- The damaged composite section is machined automatically (scarfed) to remove damaged areas.
- The damaged area and subsequently machined surface is digitized and automatically compared with its digital twin to generate ply dimensions.
- Required ply dimensions are sent to an automated cutter and stacked in their final order.
- After the repair stack is bonded onto the damaged structure, automated sanding removes any excess.
- NDI data from integrated sensors can be added to the Digital Twin.
Reactionless engines are internal momentum thrust generators which harness the electromagnetic Abraham Lorentz force to generate large amounts of applicable thrust without any propellant. Until our technology was released last year, this was supposed to be an impossible feat due to violations of the conservation of momentum. Unlike other nascent electromagnetic propulsion systems our system has been prototyped and produces enough macroscopic thrust to compete with existing engines. A video of the rudimentary propulsion may be found here: sae.org/news/video/content/13196/.

Using just 150 watts we have measured a repeatable 8 Newtons of thrust on a 3-pound system that costs less than 100 dollars. Scaling this system is currently underway. The reliability improvement impact on ground, sea, and air transportation will be revolutionary. Without the need to carry fuel, air and space maintenance operations will open up the entire space to new possibilities as well as augment existing propulsion technologies. On the ground, an internal momentum generator will improve vehicle safety by providing the possibility of momentum breaks, as well as allowing for frictionless propulsion in difficult terrains such as mud, ice, and snow.

The technology works by using a unique configuration of two electromagnetic solenoid coils, one active, one passive. A static electric current is fed to the passive coil to generate a standing magnetic field; pulses of current are fed into the active coil, which activates the mechanism according to the equation \(\text{F}_{\text{rad}} = \frac{uq^2}{6\pi cmr^2} \cdot 2B/(mr^2) \cdot dB/dt \) which is derived from a previous SAE technical paper. An iron momentum carrier captures the excess net force and delivers this momentum to the system. The iron momentum carrier acts as a piston which is then reset to its original position when the pulse of electricity is off.

The system is simple, scales smoothly, and can be manufactured in different customized configurations to fit the needs of any application. All components, (e.g., solenoid coils, iron rod, power supplies) are assembled from existing parts so development and implementation can be rapid.

Technical Advantages: Propulsion is Limited by Current Technology

- This technology generates high levels of internal momentum without the use of propellants allowing for frictionless ground propulsions, silent underwater propulsion, and propellant free atmospheric and space propulsion.
- The technology does not require propellant or friction to generate thrusts.
- No exhausts makes this engine completely emission free.
- With only a single moving part and no propellant, this engine is silent and efficient.
- All aspects of this engine can be manufactured and assembled from existing parts already abundant in the supply chain allowing for rapid implementation.

Technical Description:

- The product is an engine which can be customize for any propulsion application.
- Unique configuration of two coils harnesses the Abraham Lorentz Force

Anticipated Benefits and Applications:

- **Military:** Momentum Brakes, frictionless ground propulsion, silent and exhaust free sea propulsion, and atmospheric and space propulsion will all be revolutionized by this technology.
- Difficult operation environments such as mud, snow and ice can be navigated with this frictionless propulsion.
- The Space Domain will be completely transformed as operating in the space environment can be done without hauling heavy fuel and propellant into space.
- The improvement to reliability of transportation and ease of logistics will be revolutionary.

- **Commercial:** The technology may be utilized on all transportation in the commercial sector as well. This technology should completely transform all aspects of transportation.

- **Business Model:**
 - The technology can be licensed and easily customized to existing applications.
 - Interest in working with commercial and DoD primes to define requirements for tailored applications as well as to fully develop the technical potential of the engine.
 - Interest in helping to define technology standards and solutions in this new technological space.

- **Work to Date:**
 - To date we have developed the physical and mathematical theory underlying reactionless propulsion so that it may be fully explained under existing physical laws.
 - The thrust we produced is THOUSANDS of times greater than the current state of the art in reactionless drives.
 - We simulated the design on Simulink to determine variables for manipulation.
 - A fully functional repeat firing engine which produces 8 newtons of thrust on 150 watts of power consumption on a 3-pound system.
 - The product is currently being scaled to a 1000-watt system to attempt to generate additional thrusters.
 - Different geometries of the system have also been explored.
Billions of dollars are wasted every year due to metal loss in the industry that is caused by wear. Improving the properties of the lubricants would reduce the friction and wear of mechanical parts, which leads to extended mechanical parts lifetime, reducing the cost of maintenance, and saving fuel and energy. Internal combustion engines use significant amounts of diesel and gasoline at great cost to the owner/operator and the commercial sector, and their emissions contribute significantly to global greenhouse gas emissions. The USA DoD is the world’s largest user of diesel fuel. Reducing friction and increasing thermal heat transfer increases internal combustion engine efficiency. Carbon nanotubes and hexagonal boron nitride have been known to reduce friction and increase thermal conductivity in many applications. The combination of these two materials in the correct concentrations and proportions was studied in detail to achieve improved performance over conventional oils, or other oil additives studied to date. The anti-wear mechanism is attributed to the aggregation of the carbon nanomaterials on the surface of the metals, which reduces the shear stress, thus enhancing the tribological properties. Carbon nanotubes and hexagonal boron nitride nanosheets allow for extreme friction reduction, even when compared to high performance synthetic motor oils. Coupon testing was initially performed to refine the specific nanomaterials employed as well as the concentrations of constituents. Tests were performed by Falex corporation using an ASTM G77 Block on Ring test apparatus and revealed up to a 62% wear reduction and a 12% friction reduction compared to Mobil 1 full synthetic. A wide variety of engine tests were performed to understand the influence of the oil on a more complicated system. Engine testing showed significant improvements in fuel efficiency. Improvements up to 30% in testing engines ranging from small lightly loaded to heavily loaded diesel engines are obtained. A significant improvement in fuel efficiency was achieved in a diesel engine equipped truck. Based on this work, the typical application is expected to gain up-wards of 5 to 10% in fuel efficiency. This is dependent on the engine type and loading, but the evidence suggests that the highest loaded engines demonstrate the most significant gain in performance. In addition, horsepower gains of up to 11% and torque increases of up to 12% were observed during testing.

FRICTION REDUCING OIL ADDITIVE INCREASES ENGINE EFFICIENCY AND LONGEVITY

GREG CHRISTENSEN

Novum Nano
greg.christensen@novumnano.com
+1.605.728.4026

<table>
<thead>
<tr>
<th>Friction / Wear Testing</th>
<th>Gasoline Engine Testing</th>
<th>Diesel Generator Testing</th>
<th>Diesel Pickup and Van Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D2714 friction testing by Falex Corporation:</td>
<td>Small 4 cycle engines:</td>
<td>Kubota generator / light set:</td>
<td>Mercedes Sprinter Van:</td>
</tr>
<tr>
<td>- 47% reduction in the coefficient of friction compared to Mobile 1</td>
<td>- Increased run time by 7.9%</td>
<td>- 5% improvement in fuel efficiency</td>
<td>- 15% better MPG normal</td>
</tr>
<tr>
<td>- 60% wear reduction</td>
<td>Harley Davidson Motorcycles:</td>
<td></td>
<td>- 33% better MPG towing</td>
</tr>
<tr>
<td></td>
<td>- Increased Torque by up to 16.95% / Horsepower by up to 11.92%</td>
<td></td>
<td>RAM Cummins HD:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 27% better MPG towing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chevy Duramax:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 25% better MPG Highway</td>
</tr>
</tbody>
</table>

DoD / Military Component Problem

- The DoD uses an enormous amount of fuel and is the largest single consumer of diesel fuel in the world
- This large amount of fuel is not only expensive and detrimental to the environment but is also challenging to procure across the globe and especially in combat zones.
- Maintenance due to engine wear is a significant and related challenge

Approach

- Develop a nano based additive that increases fuel efficiency, increases torque and horsepower, while reducing engine wear
- Hydrogen bonding of carbon nanotubes and boron nitride foil has generated impressive reductions in friction and wear / improved efficiency & power

Future / Road Ahead

Placements
- All weapon systems and support equipment that use gasoline or diesel fuel

Benefits
- Reduce fuel costs
- Reduce logistical footprint to accomplish the mission
- Reduced battlefield exposure for resupply
- Reduce greenhouse gas emissions
- Reduce engine wear resulting in less downtime and expense

Funding
- Perform necessary testing for the military to adopt the oil additive leading to a MILSPEC additive or API certification for oil
- Perform additional testing on actual military vehicles and equipment followed by other applications including gear oil for vehicles including UAVs, helicopters, etc.
The Smart Susceptor Composite Repair System is a game changing method for repairing composite structures.

Problem Statement
Within the aerospace and defense industry, composite repair is a major concern and is only going to become a bigger issue as composites become more prevalent across all branches of the US military. Repairs of these materials, however, have their costs.

- Incorrect repairs are not immediately obvious and can cause damage to composite structures.
- Repair quality is highly dependent on the cured joint which depends largely on the heating of the repair zone.

Considering the material advances and the capital investments into composites, it is mind boggling that the repair industry is still using the same resistance heating blanket technology developed in the 1980s. Current aircraft are being produced entirely from composites with co-bonded and co-cured joints to connect wing-skins to ribs and spars. To make a repair or cure the green material with a traditional heating blanket results in cold spots where the material is thick, and ribs and spars draw away heat. To complete the cure, a traditional heating blanket must be turned up to raise the temperature. However, areas with less thermal load are now overheated. This is common in wing-skins with varying cross-sections or where ribs and spars act as heat sinks. These temperature variations significantly compromise the material's integrity. Therefore, it requires a very skilled and experienced technician to make quality repairs to composites without inadvertently causing greater damage.

Technology Solution
The technology solution is a heating blanket capable of self-regulating across its entire area. This is possible through the use of smart susceptor technology. The technology uses induction with a unique self-regulating heating element called a smart susceptor. The susceptor is made from a metal that becomes non-magnetic at a specific temperature called the Curie temperature. At this temperature, the heating element no longer accepts energy from the induction system and the heating stops. Regardless of the energy input into the system, the smart susceptor levels off at the same temperature. But if any point drops below the Curie temperature, that specific point becomes magnetic and begins to heat until it becomes non-magnetic.

- Demonstrated temperature regulation within ±8 at 350°F.
- Virtual impossibility of overheating.
- No specialized knowledge of the structure being repaired.
- Minimal training on control software and setup procedures.
- Increase productivity as constant monitoring is not required.

In addition, the technology is robust and has proven itself on the manufacturing line by processing more than 400+ rear horizontal stabilizers for Boeing’s 787. Additionally, Northrop Grumman is evaluating a mobile system for integration into their production line. Included in this system are complex geometry blankets capable of running independently.

PROBLEM STATEMENT
Composite materials are becoming ever more prevalent across all branches of the US military, however, repairing composites has its problems.
- Downtime due to repairs reduces combat readiness.
- Repairs made incorrectly can create additional damage without being obviously visible.
- Successful repairs depend on the skill of the technician.
- Quality of the composite repairs depend on maintaining a narrow temperature band in which the resin cures. (current resistance heating is not capable requiring the skilled technician to add or remove insulation during the cure cycle)
- Engineered features (ribs, spars, multi-thickness panels) make even heating with traditional heat blankets difficult if not impossible.

BENEFITS
- Increased combat and asset readiness.
- Quality repairs made with confidence.
- Less risk of damage to costly composite structures due to operator error or sensor malfunction.
- Highly trained technicians are not mandatory for repairs.
- Decentralizes repair network by enabling standard warfighters to make repairs.
- Proven operation in a production environment.
- Does not require constant monitoring increasing technician productivity.
- Multiple blanket systems can be synced together to facilitate large repairs.
- Installed systems have proven robust with 400+ cycles and not a single failure.
Nearly all tactical ground vehicles are experiencing brake system problems. Specifically, there is significant corrosion of the drum and brake actuation mechanisms from water and debris accumulation in the inner brake drum surface and brake chambers. This problem impacts safety, performance, operational availability, maintenance time, logistics delay time and money. Furthermore, repairing and replacing brake pads require over a dozen tools, lifts, and trained personnel. This negatively impacts vehicle and personnel readiness across the fleet. Lastly, armoring and shifting mission profiles have pushed vehicles beyond their approved gross vehicle weight rating. This crushes subassemblies like brake systems preventing Warfighters to achieve the speed, mobility, and payload requirements needed on the battlefield.

New brake technology has been developed to keep Warfighters on the move, to maintain initiative and momentum in combat. The patented sphere brake uses hydraulic pressure to compress hemispherical brake pads against a spherical brake surface. Unlike disc or drum brakes, the sphere brake generates more power with a smaller effective brake diameter. The sphere brake was designed to address the needs of the maintenance technician, the program manager, the PEO, and the Warfighter. It’s holistic in the value it delivers to all stakeholders and holistic in the value it delivers in performance. It currently takes nearly a day and at least 15 tools to service brakes on ground and air vehicle platforms. The sphere brake cuts this down to minutes and you only need your HAND. This provides several days of savings back to vehicle readiness for ground commanders. We design our kits as plug and play – no hub or wheel modifications required. We’ve demonstrated bolt-on capability with the Stryker DVH and MTVA1P2 integrating with both CTIS and ABS subsystems. Sphere brake kits also shed up to 40 lbs. per wheel-end. This affords additional payload options for ammo, medical suppliers, and fuel.

Through several concurrent defense contracts with Marine Corps Systems Command and the Rapid Capabilities and Critical Technologies Office, we’ve successfully certified the sphere brake through dyno testing and performed several iterations of track testing at Aberdeen Proving Ground for both the Stryker DVH and MTVA1P2. We’ve passed 60 slope hill hold evaluations and several track test performance requirements.

A key ingredient to this success and the speed at which SBD iterates and scales sphere brake technology across vehicle platforms are Warfighter touchpoints. We have accumulated a trove of feedback working alongside technicians at Aberdeen; reviewing our technology with local repair facilities; performing fit ups at a Field Maintenance Shop; getting hands on with Warfighters at a Limited Military User Assessment; recent feedback from the 75th Innovation Command; and hands on demonstrations with Commanding Generals.

PROBLEM STATEMENT

Description of Capability:
The sphere brake kits provide unprecedented reliability, maintainability, and safety to the Warfighter that existing brakes cannot match. The collective return of investment yields thousands of dollars of savings per hour equating to millions of dollars in savings over the life of a vehicle program.

Value to Warfighter:
- Brake pads can be replaced without any tools = increased unit readiness.
- Increased brake pad and rotor service life = increased fleet readiness.
- Less unsprung mass at wheel-end = better stability = better mobility
- Less rotational mass at wheel-end = better rideability = better fuel efficiency

TECHNOLOGY SOLUTION

- Bolt-on sphere brake kits deliver:
 - No tool brake pad changes
 - Substantial weight savings
 - Affordable kits
- Sphere Brake kits have been installed on the US Army Stryker DVH and MTVA1P2 and passed numerous evaluations and requirements at Aberdeen Proving Ground (APG).
 - 5 Issued and Pending Patents
 - Dual Use - Commercial Vehicle Industry

Graphic

Army Focus Areas:
Next Generation Combat Vehicle, Common Tactical Truck

Tech Banner Statement: Bolt-on Sphere Brakes reduce maintenance, while increasing readiness, range, and safety equating to $100Ms savings across a fleet.
FLIGHTLINE TEST INNOVATION YIELDS SIGNIFICANT SAVINGS AND SUPPORTS AGILE COMBAT EMPLOYMENT (ACE)

JON SEMANCIK

Marvin Test Solutions
jon.semancik@marvintest.com
+1.949.304.4440

Problem: Today’s armament maintainer faces the challenge of performing O-Level (flightline) test and maintenance with legacy test sets that limit the ability to quickly and efficiently verify system readiness, diagnose failures, and return the aircraft to FMC status. Legacy test sets are typically utilized on a single aircraft, or perform only a single function for multiple aircraft, resulting in long test/repair times, and increased training/logistics challenges.

Technology: The MTS-3060A SmartCan™ Universal O-Level Armament Test Set incorporates more than 35 measurement channels, squib measurements, active communications interfaces, 3 ARBs, electronic loads, discrete outputs, data logging, BIT, self-test, automated calibration, cable ID, and sunlight-readable LCD display; powered by 6 AA batteries.

This COTS designated armament test set is the most cybersecure flightline test set available, leveraging innovative design and packaging techniques to replace multiple currently deployed, large-footprint, O-Level armament test sets with a single rugged, hand-held solution weighing 4 lbs. The kit including self-test, adapters, and cables, weighs < 50 lbs.

Status: The MTS-3060A is a TRL 9, deployed non-developmental item available for immediate purchase and use, and is applicable to all branches of the USA, FMS Armed Forces and DLA. It has received SERD certification (SERD #75A77) and declared a fully qualified and approved solution for the F-16, effective for testing armament systems including launchers, bomb racks, pylons, fuel tanks, and gun.

Test/Simulation Data: The MTS-3060A is currently deployed supporting F-16, F-15, TA-50, FA-50, Hawk, F-18, and F-5 as well as on a UAS and in 2 SILs. Qualification data, SERD certification, and a cybersecurity ATO further validate its capabilities.

Next Steps/Potential Benefits: The MTS-3060A significantly improves warfighter readiness while reducing maintenance costs. Maintenance savings are projected to be between $7.5M – $10M annually. When coupled with reduced training, savings are projected to approach $12M annually. Savings are based on scheduled maintenance activities and do not reflect additional savings realized from unscheduled activities.

F-16 armament test setup time is reduced 91% (45 to 4 minutes), test time for a MIL-STD-1760 pylon is reduced 85% (20 to 3 minutes) and reduced 89% (35 to 4 minutes) for a LAU-129. Further savings will be seen through test set consolidation, simplified logistics, and standardized training. Expanding access across the DOD supporting all armed aircraft will net similar savings.

One MTS-3060A can replace (15) armament test sets currently supporting (9) armed USAF platforms; many more for all of DOD.

The MTS-3060A enables the USAF’s ACE doctrine by supporting both legacy and smart weapon test on any DOD armed aircraft, providing data for predictive maintenance, and reducing logistics and training requirements. It is the Multi-capable Airmen enabler.
A picture speaks a thousand words, a 3D speaks a thousand pictures.

Traditional field service data points are not sufficient for an industrial operation’s risk management and mitigation, operation cost, worker safety and efficiency.

Legacy and unconnected devices still rely on paper manuals and drawings to maintain, service and repair. This process is very time consuming and sometimes dangerous, especially in the battle times. Edlore Digital Twin technology solves this problem by making every equipment Operations & Maintenance manuals interactive, smart, and available on mobile and wearable devices for hands free operation.

Edlore platform and service converts a legacy paper, pdf manual into an interactive 3D with added parts metadata for parts identification, information, procurement, or 3D printing. Edlore modules include, cloud documentation repository, automated workorder system, artificial intelligence (AI) built troubleshooting wizard, media uploads from the field, preventative and predictive maintenance tools and remote expert video chat. All delivered on mobile and wearable devices.

PROBLEM STATEMENT

Traditional field service data points are not sufficient for an industrial operation’s risk management and mitigation, operation cost, worker safety and efficiency.

Legacy and unconnected devices still rely on paper manuals and drawings to maintain, service and repair. This process is very time consuming and sometimes dangerous, especially in the battle times. Edlore Digital Twin technology solves this problem by making every equipment Operations & Maintenance O&M manuals interactive, smart, and available on mobile and wearable devices for hands free operation.

BENEFITS

- Real time access to mission critical data and interactive experiences that engage and educate personnel. Improve safety, compliance and performance by integrating 3D visual tools.
- Reduced Maintenance, Repair and Service times.
- Increase efficiency of operations.
- Increase safety, by providing safety instructions and protocols before the service is started.

TECHNOLOGY SOLUTION

- Digital Twin, 3D/AR parts identification and procurement capabilities.
- AI built troubleshooting wizard to help identify the problem.
- ML on-boarding system by scraping pdf manuals to extract procedures, warnings, step by step instructions and drawings.
- Video assist by remote experts to help guide the service.
- Step-by-step instructions in writing, video or animation formats to complete tasks.
TRANSFORMING VEHICLE REPAIR AND MAINTENANCE

STEPHANIE BLAKE
GTWERX Automotive Inc.
stephanie@gtwerxauto.com
+1.757.561.0770

The Department of Defense continues to suffer from readiness challenges. Its maintainers rely on limited numbers of hard copy technical manuals (TM) or require a desktop to access electronic TMs to support maintenance activities for the second-largest federal vehicle fleet after the U.S. Postal Service. This outdated approach to maintenance training, know-how, and vehicle servicing is inefficient, introduces errors and does not support retaining digital natives entering the force. The GTWERX Automotive augmented reality/virtual reality (AR/VR) immersive car repair app transforms vehicle maintenance and repairs by improving routine work experiences and increasing force readiness.

The GTWERX app offers several features that modernize training and guided repair. Our virtual garage utilizes 3D visualizations and high-fidelity digital models to educate the user on each step of maintenance or repair to be done, including practicing on a virtual engine. Then, using a smartphone or tablet, high-fidelity augmented reality overlays digital “how-to content” on the physical auto to peer into the engine and guide the user through the repair process.

A key difference between our app and other AR-enabled training services is our GTWERX proprietary Computer Vision software to reliably detect parts and components. This artificial intelligence (AI)-driven technology enables rapid scaling to any vehicle. We have achieved Technological Readiness Level 7 in system testing and our first commercial app for a classic Mustang is already being successfully tested at local auto shows to prepare for a public release of the GTWERX app V1.0 in late 2022.

Across the services, DOD has funded early experimentation and studies proving the value of AR/VR-enabled digital innovation for training and operations to reduce training and task time. The GTWERX app foundry can be applied to any vehicle or system and used as a standalone app or easily integrate into existing DoD enterprise platform solutions to improve maintenance effectiveness and reduce cost. GTWERX offers an affordable vehicle repair app that readily scales and will contribute to greater maintenance efficiencies to any unit across the service that is responsible for maintaining vehicles.

PROBLEM STATEMENT

- The Department of Defense continues to suffer from readiness challenges.
- Maintainers rely on limited numbers of hard copy technical manuals or require a desktop to access electronic TMs to support maintenance activities.
- This outdated process is inefficient, introduces errors and does not support retaining digital natives entering the force.

BENEFITS

- Increases efficiency by reducing training time with our immersive virtual garage.
- High fidelity augmented reality overlays digital “how-to content” reducing errors and repair time.
- AI-driven computer vision enables rapid scaling and at lower costs.
- Modern digital app improves the user experience for training and support.

TECHNOLOGY SOLUTION

AR/VR Immersive Car Repair App

Virtual Garage: 3D visualizations educate the user on each step of maintenance or repair to be done on their auto.
Guided Repair: Access detailed “how-to” repair instructions with augmented reality overlays on any mobile device.
Order Parts: Computer vision software identifies the specific part and accesses a list of options to compare and purchase.
Access to Repair Experts: Virtually connect to experts to provide interactive guidance and troubleshooting.

GTWERX APP
ARSOME develops mixed reality “virtual model” Learning Management Systems (LMS) with continuously more challenging modules presenting learners high resolution 3D-models that will meet the needs advanced 21st century learning and visualization for shipboard or shore technical manuals, maintenance procedures, construction, repair, and various other applications. We envision to support a set of multidiscipline learning modalities by combining Augmented Reality and Virtual Reality to enhance and greatly improve training for casualty or maintenance scenarios. With Augmented and Virtual reality modules, ship or shore crash and salvage crews can better prepare for emergency casualty scenarios on multiple platforms and in multiple scenarios in a virtual or augmented reality world, thereby alleviating the need for an actual crashed aircraft. Augmented and Virtual Reality modules can be used in the training classroom, in the field, or onboard ship to provide realistic training scenarios without the need for actual crashed aircraft, improving user experience prior to casualty evolutions. Further, the data captured from the tracking of performance will inform both the instructor and learners of areas where improvement is required.

Crash and salvage crews routinely train on only one type of aircraft and the scenarios are typically either the same or are unique to each individual instructor’s experience. With the use of Augmented and Virtual Reality, an infinite number of scenarios on multiple aircraft type can be developed and experienced in a virtual world. Such user experience will enhance training, making it more realistic. Further, it will improve readiness, leading to a greater ability to save lives and equipment.

ARSOME has developed both Augmented and Virtual Reality training scenarios to train automobile vehicle crash adjustors for a leading U.S. Insurance company. These virtual scenarios provide for multiple types of vehicles, multiple crash scenarios, unique damage criteria, and real-life imagery in addition to the virtual models. Additionally, ARSOME’s Training Experts can appear live in the virtual world during the training evolutions as well as pre-recorded to enhance the training experience. This type of training has decreased the time to train, reduced errors in the field, and improved learning retention, especially with the ability to train on a virtually unlimited set of car models.

PROBLEM STATEMENT
- Crash & Salvage crews typically train on a single aircraft platform and only a few scenarios.
- Availability of various aircraft type is limited.
- Although trainers are experienced, their tools are limited to only a few aircraft type and scenarios are not as expansive as they can be.

BENEFITS
- With ARSOME’s AR & VR training modules, a leading U.S. Insurance company has experienced decreased time to train, reduction in field errors, and better prepared adjustors.
- Crash and Salvage crews will be better prepared for unique and varied scenarios on multiple aircraft types.
- Lower costs and increased training opportunities.
- Improved Readiness.

TECHNOLOGY SOLUTION
ARSOME’s AR/VR/MR solutions can be tailored to the requirements, needs, and pain points of training for crash and salvage operations. Leveraging industry standard equipment, local networks, and/or handheld localized devices, ARSOME’s AR/VR/MR development environment is local to the end user’s secure environment. A multitude of scenarios and aircraft type models can be developed to enhance and improve training.
Efficient maintenance (mx) is a key enabler of operational readiness. Maintainer shortages have left inexperienced maintainers carrying the burden of sustaining aging fleets. Unnecessary part removals and excessive time spent troubleshooting hamper aircraft availability.

Boeing is leveraging data to enable customer outcomes and increases predictability to ultimately optimize the operational, sustainment, and training experience for our customers.

Military Positive Repair Information Text Analyzer (Mil-PRITA) is designed to bring aircraft mx into the world of automated continuous improvement. It is a platform-agnostic mx productivity tool built on historical aircraft fleet information. Mil-PRITA has a data architecture that ingests mx and repair procedures for an aircraft fleet to create a searchable knowledge base through textual analytics. Thus, when maintainers are confronted with a fault, they can see the history of successful corrective mx actions for that fault. Mil-PRITA presents the steps that actually corrected a fault in order of their likelihood for both the squadron and the fleet.

Because it relies on the textual entries, Mil-PRITA avoids the inaccuracies inherent in mx systems’ code selection. History across commercial and defense customers has shown that maintainer’s textual entries have a much higher accuracy rates, especially for difficult troubleshooting tasks. Mil-PRITA is intended to be used alongside technical publications and serve as an automated ‘over the shoulder’ 7 level maintainer, who can help guide troubleshooting and help identify the most likely fault resolution within the tech guidance. As a learning system, the more it is used, and the more mx performed on the fleet, the smarter the system becomes. The ability to age data and focus it on squadron allows for more specialized maturation of the capability to give localized advice.

PRITA’s body of work includes seven patents. It has been employed across the 737, 747, 767, 777, and 787 platforms and we have leveraged that success to redesigned PRITA for our defense customers. We developed Mil-PRITA for the F-15E and are currently completing the conversion to EX as well as a V-22 Proof of Concept. Development for CH-47 is to follow.

The commercial version has provided significant value to Boeing’s airline customer in various ways, including the reduction of costly component replacements when an alternate, often cheaper, solution is available with higher historical success rate. Boeing estimates unnecessary removals due to faulty troubleshooting cost airlines $1,500 per event. Given that PRITA was accessed over 700,000 times in 2018 by airline customers, if using the recommend actions in PRITA resulted in 1 less unnecessary removal per 100 events, the realized customer savings would be over $10M in 2018 alone.

Mil-PRITA effectively reduces mx man hours and costs. Boeing can help DoD increase readiness and improve affordability through application of this capability.
The shipyard process for maintenance and manufacturing can cause immense amounts of “downtime” for a worker causing projects to go over budget and get behind schedule causing delays to delivery dates. A solution is required to promote efficiency through process improvement and technology integration throughout the design and manufacturing processes. Everyone from the maintenance personnel to executive leadership can and will benefit from an expert guidance solution.

By deploying on a modular, single platform solution built with an on-premises first architecture with the built-in capabilities for scaling outward to the secure cloud for a solution with hybrid accessibility one can be assured that the data is always available and highly secure. By enabling secured peer-to-peer AR video communication, secured augmented work instructions, navigational and point of interest guidance, as well as real-time data provided at the right time in the right place workers are empowered to act quickly and efficiently with the task at hand allowing overall construction to be completed on-time.

Mixed reality expert guidance solution reduces the time required to communicate with the right people, provides the right data at the right time for higher employee effectiveness reducing mean time to repair, implement, and modify all while reducing unplanned downtime. Providing a means to capture content allows one to retain expert knowledge for the retiring workforce and be able to deliver it back with visual work instructions reduces the chance of error on an install or repair.

The solution has been developed in collaboration with Portsmouth Naval Shipyard with feedback and requirements being gathered from other industry leaders. It has been successfully demonstrated to strategic stakeholders and is getting ready for Phase II which includes a production network deployment. The technology capabilities have been demonstrated in a decommissioned submarine, The Albacore.

Additionally, the development team saw a need to be able to show the solution on the road, so there is a multi-deployment demonstration which could connect via edge device, public cloud, or custom deployment.

Additional funding would allow us to improve echo cancellation on the audio as well as expand our efforts of gaining awareness and ability to positively impact as many organizations as possible.
The VRPT allows painters to train in a safe, chemical and risk-free environment, thereby reducing a significant amount of rework, man hours, flow-days, and material consumption during maintenance of these assets.

The VRPT teaches paint personnel in accordance with DoD Tech Order requirements. The solution simulates appropriate paint settings, paint gun adjustments (fan pattern, PSI, etc.), and free movement throughout the virtual hangar. The user can select various paint guns and products (polycoat, primer, etc.) with their own configurable properties (viscosity, spray type, etc.). The user also interacts with realistic virtual paint panels, materials, aircraft, and fully controllable support systems (grounding points, fluid/air pressure sources/manifolds, stands and scaffolding, etc.) and safety equipment (breathing systems, fall-restraint systems, PPE).

The VRPT combines a uniquely designed core physics engine and commercial-of-the-shelf (COTS) hardware. The VRPT displays real-time paint spray performance indicators and patterns/deficiencies (wrinkling, sagging, etc.) and records for later assessment all user movement to include speed, proximity, trigger position, stroke duration, paint depth, angle of the paint gun, and active transfer efficiency. This system is a technological leap forward for training painters across the AF and DoD.

The VRPT is scalable across the DoD for any facilities that paint aircraft or aircraft parts and can be customized to meet coating requirements for Low Observable vehicles, land vehicles, space vehicles and ships. It has also been marketed to various agencies like the Naval Air Warfare Center Training Systems Division, Hill AFB, and Tinker AFB.
SimiGon is creating and adapting neural networks to enhance and accelerate maintainer training. SimiGon is in the process of developing and training many artificial intelligence (AI) neural network synthetic experts (SE) for aircrew operations and procedures. Training will continuously be performed on the models to adapt them for other domains.

The SEs, after ingesting the simulation data, provide an output of correct decisions so that the aircraft will successfully perform any given procedure. The decision data is used by the Next Generation Virtual Instructor (NxVI) to instruct students adeptly, even when the students are not performing well.

Algorithms for maintainer training will include a wide range of job guides, from flight line tasks to advanced avionics maintenance, supporting Level 3 through Level 7 technicians. The algorithms may be run simultaneously.

SimiGon’s proposed solution provides automated, robust, detailed, and constantly improving instruction and data logging for students, greatly reducing burden on instructors in training, enhancing student progress, and providing instructors better insight about student proficiency and weaknesses in debrief.

SimiGon’s ATAI library and NxVI plugin increase quality and quantity of instruction through the reduced burden on instructors and improved training method through constantly improved feedback and virtual instruction on student performance.

PROBLEM STATEMENT

Training world-class maintainers is critical for national security - fleet readiness and aircrew safety depends on this. Yet, there are many constraints today in training maintainers. Instructors are overloaded with tasks leaving less time for one-on-one training; simulation or game based training in “Free play” mode without instructor engagement does not deliver effective training; a significant effort is required to create engaging courseware; siloed simulation or gaming platforms don’t talk to each other limiting reusability; there is limited availability of Virtual Instructors (Intelligent tutors).

SimiGon Inc. proposes solving these problems with it’s Action Trainer Artificial Intelligence (ATAI).

BENEFITS

- Limited demands on instructors
- “Free play” is enhanced by AI
- AI-generated, interactive, engaging Courseware
- Agnostic, reusable, cross-platform ATAI
- Next-Gen VI
- Framework for accessing and training AI procedure experts
- Deep Q learning collection of reusable, pre-trained and trainable AI for action and decision-based procedures
- Technician troubleshooting / fault diagnostics
- Teach efficiency and decision making

TECHNOLOGY SOLUTION

The next step in accelerating training for maintainers is in the development and deployment of a neural network artificial intelligence (AI) library, Action Trainer Artificial Intelligence (ATAI), and next generation Virtual Instructor (NxVI).

Developed to support multiple domains and adapted specifically for aviation maintenance training needs, ATAI provides the AI library for automated adaptation of the NxVI agents. This proposed solution is an open architecture, cross platform library and plugin available for all simulation and game engines.

The resulting plugin will significantly reduce the time required to create troubleshooting training and courseware while accelerating efficiency and throughput.

HIGH LEVEL ARCHITECTURE

NxVI DESCRIPTION

<table>
<thead>
<tr>
<th>ATAI Procedure Expert</th>
<th>NxVI</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEAN MAINTENANCE THROUGH PROCESS AUTOMATION

CHANING WRIGHT

Skyplates
wright@skyplates.com
+1.678.938.7236

50% of maintenance is spent utilizing screws and fasteners to maintenance and repair weapon systems. The Skyplate automates the sustainment process through lean six sigma initiatives. Integration reduces maintenance cost, mitigates foreign object and debris related incidents, and provides a solution to the challenges of meeting Mission Capability Goals.

The Skyplate creates a lean six sigma workflow that allows a repeatable and reproducible maintenance process and accelerates the maintenance process. A streamlined maintenance process boost productivity, minimizes weapon system downtime, maintains scheduling, and controls cost.

PROBLEM STATEMENT
Unsecured and unsorted screws, nuts, bolts, washers, etc. in aviation hangars and flightlines pose thousands of daily unnecessary but preventable risks. Misplacement of these items often results in millions of materiel repair dollars, thousands of manhours in preventable maintenance and rework, and a failure to meet mission readiness requirements for deployments and training.

- iPhone: 100 screws
- Car or Truck: 4k+ screws
- UH-60/F-35: \(1.5M+\) screws

BENEFITS

Improved
- Increased readiness
- Organization & control of mission critical maintenance items
- Identical schematics on Skyplate and equipment increases technician proficiency
- Supply chain optimization through Skyplate Kits

Decreased
- Foreign Object & Debris (FOD) incidents caused by misplacement of hardware (screws, nuts, bolts, etc.)
- Location of miniature items required for maintenance & repair
- Average maintenance cost & repair times

TECHNOLOGY SOLUTION
Implement the patented Skyplates Process Tool to simplify and streamline maintenance processes across weapon systems
The Deputy Assistant Secretary of Defense for Materiel Readiness is challenging you to submit your maintenance related innovations. Revolutionary or Evolutionary; showcase your discoveries to the maintenance community at the 2023 Department of Defense Maintenance Symposium and shape the future of the industry.

This is your opportunity to demonstrate how to keep maintenance ahead of the curve in: inspections and testing, repair methods, business processes, predictive analytics, training, and more.

Submissions must meet the following criteria in order to be considered for the maintenance innovation challenge:

1. Must be an original contribution to the state of the art
2. Technically accurate—focused on current or potential maintenance operations or management—and strictly avoid commercialism
3. Must be feasible or practical
4. Abstract must be submitted using the template provided (abstract 300–500 words only)
5. Include a powerpoint quad chart (template details and requirements below). Entries from previous years will not be accepted
6. All submissions must be cleared for public release

All submissions that meet the minimum criteria listed above will be posted on a public website and included in a Maintenance Innovation Challenge summary booklet, distributed at the Symposium. From the eligible abstracts, an evaluation board comprised of maintenance subject matter experts will select six finalists to present at the 2023 DoD Maintenance Symposium.

Individuals representing the six Maintenance Innovation Challenge finalists are responsible for registering for the symposium and any associated fees, if not attending in another capacity.

If you have any questions or need further information regarding the 2023 Maintenance Innovation Challenge please contact Heather Smith of SAE International at heather.smith@sae.org.