The only thing more important than using vehicle engineering standards is helping to create them.
SAE International Standards Development

TABLE OF CONTENTS

2 Standards are inextricably linked to all facets of your business

3 SAE: the authority on vehicle engineering standards development

6 SAE in the Ground Vehicle Industry

10 SAE in the Aerospace Industry

13 Delivering a full range of standards development capabilities for global standardization

15 How can my company begin benefiting from SAE International standardization?

17 Experience the benefits strategic standardization can offer

19 Contact information

Confidentiality

Current year Aerospace Program Highlights

Current year Ground Vehicle Program Highlights
Standards. So pervasive in our lives, we overlook the basic value they provide. Behind the scenes, standards make everyday life work. They provide rules, guidelines, or characteristics for activities or their results. They coalesce markets. And, they save organizations money.

Shouldn’t your organization be involved in developing standards?
Standards are inextricably linked to all facets of your business

On almost any given day, Standards Development Organizations (SDO) or their committees, meet to influence the content of standards—making decisions that can affect the market and a company’s bottom line.

Successful companies recognize that standards set expectations for vehicle safety, reliability, and quality. They also acknowledge that standards—or globally harmonized solutions to industry issues—are important business tools, which lead to these many benefits:

- competitive advantage
- customer confidence & loyalty
- reduced duplication of efforts, efficiency, & cost savings
- reduced time to market
- regulatory compliance
- lower procurement costs
- interoperability
- expanded market potential
- effective specification
- reduced R&D risk
- innovation

Demonstrating compliance to standards means business to companies. And when you or your company participate in standards-setting activities you benefit even more. Involvement in the development of industry standards allows you to bring your concerns and needs to bear on the process. Your participation ensures that you can influence and provide input into the requirements and practices used around the world.

SAE International: the authority on vehicle engineering standards development

No matter the concern of your company or the challenges to your industry, solutions cannot be developed in a vacuum. Voluntary consensus-based standards development is a powerful example of how partnerships can work to develop concrete solutions to real-world problems.

And in the global mobility industry, there is but one SDO uniquely dedicated to solving the toughest technical challenges of the aerospace and ground vehicles sectors through industry-driven, consensus-based standards development. That SDO is SAE International.

Synonymous with mobility engineering, SAE develops more vehicle technical standards than any other organization, offers the largest collection of vehicle engineering content, and boasts the largest network of global engineers on earth.
Standards to aid in Smart Grid development

Integrated vehicle health management standardization

SAE J1772™ electric-vehicle charging coupler

A suite of documents that help mitigate counterfeit electronic parts

Ground-breaking standards developments since 1905
SAE International—whose first vice president was an up-and-coming engineering talent by the name of Henry Ford and included early supporters like Orville Wright—was founded in 1905 and based on the fundamentals of providing a platform for collaborative and informed dialog.

From its founding, the engineering and scientific organization was actively concerned with standardization. SAE produced the first international specification for an interchangeable aeronautical spark plug and common material standards for handling increased World War I aircraft production... the first engine oil viscosity standard and the introduction of engine horsepower ratings... as well as motorcycle headlamps and rollover protective structures for tractors.

These early documents were more than the start of what would become today’s SAE standards product line, now nearly 11,000 documents strong and used around the globe. They were the collaborative beginnings of the formal and well-established modern day process that the world has come to know as consensus standards development— and the beginning of many “firsts” by the organization that is the most respected, premier SDO for vehicle engineering standards.

Today, SAE International continues to play a critical role in the progress of the vehicle industry serving as a neutral forum for the global collaboration on common engineering challenges and the creation of such ground-breaking standards as SAE J1772™, which defines electric-vehicle charging couplers; standards to aid in the development of the Smart Grid; counterfeit electronic parts mitigation standards; and those addressing integrated vehicle health management.

Its 700 technical committees and voluntary efforts of 14,000 technical professionals from countries around the world meet at the SAE standards development table and serve every aspect of industry from vehicle design and integration to build, manufacture, operate, and maintain. They address critical issues on fuel to weather conditions, materials to electronics, engine power to energy mandates. This, and a history of being at the forefront of many of the mobility industry’s most significant advances, uniquely positions SAE International for work with industry in developing standards— standards that move industry toward ever-safer, more efficient transportation while helping companies reduce their costs, increase productivity, and advance new technologies.
SAE International is known for its incredible role in the pioneering efforts of growing the dynamic mobility industry into a great cornerstone of today’s global economy. This recognition continues today with its global standards development efforts that serve as forerunners to tomorrow’s vehicle guidelines.
For example, SAE partnered with 190 committee members representing some 50 companies around the world on the consensus-based development of SAE J1772™ AC/DC combo coupler charging standard—stabilizing and unifying the global market for EV/PHEV manufacturers and paving the way for future global electromobility.

SAE has long been known for its central role in developing North American automotive standards—including emissions and safety standards, which meet some of the world’s most stringent regulations. It brings these technical documents for and from the US market to the global standards development table through its role in the International Organization for Standardization (ISO), therefore making it a vital conduit for conducting business in North America.

As the world’s center of expertise on Commercial Vehicle/ConAg standards development, many of SAE’s standards are adopted by the American National Standards Institute (ANSI) and ISO and serve as this industry’s most important global documents. Among its most important consensus works in this industry are its J1939 standards for controller area networks (CAN).

While SAE International’s impact on the global history of the automotive industry is undeniable, here are a few examples of its pervasive impact on the standards activities of today’s cars and trucks.

J826™
H-Point Device for Interior Dimensions

J175
Wheel Testing
The “J” series documents by SAE are its most important and well-known ground vehicle standards. SAE’s ground vehicle standards repository includes nearly 2,500 global documents, which cover automotive, construction and agricultural equipment, heavy trucks, buses and specialty vehicles. These documents are developed and managed to comply with the World Trade Organization’s guidelines for development of international standards by 350 industry-specific SAE councils and technical committees and some 7,000 voluntary industry participants from 43 countries.

The committees of SAE are also responsible for SAE Referee Materials and Engineering Aids—products that assist industry in carrying out and advancing best practices set forth in SAE documents.

SAE’s H-Point Machines™, for example, are three-dimensional manikins for defining and locating the driver H-point, which is used in the design and audit of vehicle seating and interior packages. Used in conjunction with SAE J826™, H-Point Machine and Design Tool Procedures and Specifications, the devices are required safety certification tools for vehicle production in countries around the world.

In addition to the development and maintenance of its family of ground vehicle technical standards, SAE’s Ground Vehicle Development Program is also an active partner with other SDO’s, government agencies, and regulatory bodies collaborating closely to support the newest, most robust, and comprehensive standards/products for a global marketplace.

SAE’s partners in global standards development

- Society of Automotive Engineers of Japan (JSAE)
- German Electrical and Electronic Manufacturers Association (ZVEI)
- US Federal Highway Administration (FHWA)
- China Automotive Technology & Research Center (CATARC)
- National Highway Traffic Safety Administration (NHTSA)
- US Department of Transportation (DoT)
- Korean Agency for Technology and Standards (KATS)
- US Department of Energy (DoE)
- Japan Automobile Research Institute (JARI)
- US Environmental Protection Agency (EPA)
- Brasilian National Standards Organization (ABNT)
- American National Standards Institute (ANSI); US Technical Advisory Group (US TAG/ANSI Lisason)
- Automotive Electronics Council (AEC)
- The European Telecommunications Standards Institute (ETSI)
- International Organization for Standardization (ISO); US representative; Secretariat for four ISO TC22 Road Vehicle Committees

J1667
Diesel Smoke Measurement

J2627
Truck Braking ABS/ECBS

J1321
Fuel Consumption Testing

J2675
Tire Testing
SAE International standards can be found throughout today’s trucks. Engineering Aides, like SAE H-Point Machines™, help in the implementation of standards.

SAE International Ground Vehicle Technical Committees encompass the full marketplace with the following committees that address industry-specific standardization needs.

Motor Vehicle
- Chassis Systems
- Vehicle Safety Systems
- Lighting Systems
- Service Development
- Vehicle Engineering Systems
- Electrical Systems
- Electrified Powertrain
- IC Powertrain
- Green Technology

Truck & Bus
- Advanced & Hybrid Powertrain
- Body & Occupant Environment
- Electrical/Electronics
- Brake & Stability Control
- Total Vehicle

Fuels & Lubricants
- Engine Lubrication
- Industrial Lubricants
- Driveline & Chassis Lubrication
- Fuels

Materials, Processes & Parts
- Lightweight Vehicle Design
- Automotive Corrosion & Prevention
- Automotive Adhesives & Sealants
- Acoustical Materials
- Fasteners
- Automotive Rubber Specs
- Surface Enhancement
- Spline B92
- Non-Hydraulic Hose
- Plastics
- Textile & Flexible Plastics
- Vibration Control
- Hose/Clamp Performance & Compatibility
- Ground Vehicle Reliability
- Metals
- Spring
- Fluid Conductors Connectors
- Fatigue Design & Evaluation

Construction, Agricultural & Off-Road Machinery
- Common Tests
- Human Factors
- Machine Technical
- Operator Protection
- Cranes & Lifting Devices

Specialized Vehicle & Equipment
- Personal Watercraft
- Small Engine & Powered Equipment
- Snowmobile
- Special Purpose Vehicle
- Trailer
- Motorcycle
- Marine
- Ship Fluid Systems
- Ship Systems – Fasteners

SAE International H-Point Machines™ can be found throughout today’s trucks. Engineering Aides, like SAE H-Point Machines™, help in the implementation of standards.

J2422
Cab Roof Strength

J1939
Serial Control and Communications

CRP 013
Truck Crashworthiness

H-Point Machines™
Among its most important and well-recognized aerospace consensus works are SAE’s internationally adopted AS (Aerospace Standards), AMS® (Aerospace Material Specifications), ARP (Aerospace Recommended Practices), and AIR (Aerospace Information Reports) documents.

A small sampling of SAE International’s standards that can be found on today’s typical aircraft.
SAE International has been facilitating the development of global standards for the aerospace industry since its introduction of the first interchangeable spark plug standard. And while known for producing the most mobility engineering standards, the fueling of a century worth of aerospace industry advancement has helped earn SAE the position of being **the world's largest, most respected aerospace SDO.**

Global standards are essential for aircraft certification airworthiness and interoperability. As the leading aerospace SDO, SAE International works with industry, government, and regulatory agencies throughout the world to create an extensive family of international standards that form the technical basis of regulations and government requirements.

- The US Department of Defense has adopted more standards from SAE than from any other SDO.
- 313 SAE standards are referenced in Federal Aviation Administration (FAA) regulations including Federal Aviation Regulations (FARs), Technical Standard Orders (TSOs), Search Advisory Circulars (ACs), and FAA standards.
- 117 SAE documents are referenced in European Aviation Safety Agency (EASA) Certification Specifications and European Technical Standard Orders.
- Over 25 SAE documents are referenced in International Civil Aviation Organization (ICAO) Standards and Recommended Practices (SARPs) and compliance documents, which provide guidance on SARPs.
- SAE partners with the International Air Transport Association (IATA) on standards for composite repair and with IATA and ICAO on globally harmonized deicing standards.
- NATO Standardization Agency (NSA) and SAE have a technical cooperation agreement for the development of global standards for the defense industries in the nations of the North Atlantic Treaty Organization.
- In China, SAE works with CAPE (China Aero Polytechnical Establishment) for the use of global industry standards in the Chinese aviation market.

In addition, SAE partners with a number of regional SDOs on standards development including the joint publication of fuel cell and lightning protection standards with the European Organization for Civil Aviation Equipment (EUROCAE) and high-pressure hydraulic fitting standards with the AeroSpace and Defense Industries Association of Europe (ASD-STAN).

For aerospace quality, SAE partners with ASD-STAN and the Society of Japanese Aerospace Companies (SJAC) to manage the International Aerospace Quality Group (IAQG). Dedicated to improving quality and reducing costs for the full supply chain worldwide, the IAQG standards-based programs are the foundation for the SAE administered OASIS database of qualified suppliers.
SAE’s global standard development role can be seen in its technical committee rosters, which include 7,000 experts from 56 countries—with European committee participation instances alone totaling 3,678. Its 250 committees—representing industry (airframers, suppliers, operators, MROs), regulatory authorities, military agencies, researchers, and consultants—serve the full spectrum of aerospace businesses in both the commercial and military sectors thereby meeting the engineering, advanced technology, safety, regulatory, and defense needs of a world market.

SAE International Aerospace Technical Committees serve the full spectrum of the needs of an industry that depends on global standards.

<table>
<thead>
<tr>
<th>Aerospace Projects Systems</th>
<th>Aerospace Propulsion Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Behavioral Engineering Technology</td>
<td>Engine Accessory Installations</td>
</tr>
<tr>
<td>Aircraft & Systems Development & Safety Assessment</td>
<td>Starting Systems & Auxiliary Power</td>
</tr>
<tr>
<td>Human Modeling Technology</td>
<td>General Standards for Aerospace & Propulsion Systems</td>
</tr>
<tr>
<td>Americas Aerospace Quality</td>
<td>Propulsion Ignition Systems</td>
</tr>
<tr>
<td>Aviation Fuel Operations</td>
<td>Aircraft Exhaust Emissions Measurement</td>
</tr>
<tr>
<td>Human Factors in Aerospace Maintenance</td>
<td>Standards & Editorial</td>
</tr>
<tr>
<td>Radio Frequency Identification (RFiD) Aerospace Applications</td>
<td>Aerospace Propulsion Systems Health Management</td>
</tr>
<tr>
<td>Counterfeit Electronic Parts</td>
<td>In-Flight Propulsion Measurement</td>
</tr>
<tr>
<td>Airport Lighting</td>
<td>Propulsion Lubricants</td>
</tr>
<tr>
<td>Counterfeit Material</td>
<td>Electronic Engine Controls</td>
</tr>
<tr>
<td>Integrated Vehicle Health Management (IVHM)</td>
<td>Aviation Piston Engine Fuels & Lubricants</td>
</tr>
<tr>
<td>Environmental</td>
<td>Aerospace Propulsion Systems Support Equipment</td>
</tr>
<tr>
<td>Aerospace Engine Supply Chain Quality</td>
<td>Helicopter Powerplant</td>
</tr>
<tr>
<td>Manufacturing Management</td>
<td>Gas Turbine Performance Simulation</td>
</tr>
<tr>
<td></td>
<td>Nomenclature & Interfaces</td>
</tr>
<tr>
<td></td>
<td>Turbine Engine Inlet Flow Distortion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerospace Systems</th>
<th>Aerospace Materials Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Instruments</td>
<td>Metals & Related Processes</td>
</tr>
<tr>
<td>Aerospace Landing Gear Systems</td>
<td>Finishes, Processes and Fluids</td>
</tr>
<tr>
<td>Aircraft Oxygen Equipment</td>
<td>Nonferrous Alloys (Al, Mg, & Cu)</td>
</tr>
<tr>
<td>Aircraft Lighting Steering</td>
<td>Carbon & Low Alloy Steels, Specialty Steels</td>
</tr>
<tr>
<td>Aircraft Noise Measure & Noise Aviation Emission Modeling</td>
<td>Corrosion & Heat Resistant Alloys</td>
</tr>
<tr>
<td>Aircraft Environmental Systems</td>
<td>Titanium, Beryllium & Refractory Materials</td>
</tr>
<tr>
<td>Aircraft Icing Technology</td>
<td>Aerospace Metals Engineering</td>
</tr>
<tr>
<td>Flight Deck & Handling Qualities for Transport Aircraft</td>
<td>Surface Enhancement</td>
</tr>
<tr>
<td>Cabin Safety Provisions</td>
<td>Non-Metals & Related Processes</td>
</tr>
<tr>
<td>Aircraft Seat</td>
<td>Elastomers</td>
</tr>
<tr>
<td>Airframe Control Bearings</td>
<td>Polymeric Materials</td>
</tr>
<tr>
<td></td>
<td>Composite Materials</td>
</tr>
<tr>
<td>Airport/Ground Operations & Equipment Systems</td>
<td>Commercial Aircraft Composite Repair</td>
</tr>
<tr>
<td>Air Cargo & Aircraft Ground Equipment & Systems</td>
<td>Organic Coatings</td>
</tr>
<tr>
<td>Aircraft Ground Deicing</td>
<td>Aerospace Sealing</td>
</tr>
<tr>
<td>Airport Snow & Ice Control Equipment</td>
<td>Aircraft Maintenance Chemicals & Materials</td>
</tr>
<tr>
<td></td>
<td>Aircraft Greases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerospace Electronics & Electrical Systems</th>
<th>Non-Destructive Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning</td>
<td>Systems, Standards & Technology</td>
</tr>
<tr>
<td>Electromagnetic Environmental Effects</td>
<td>Component Parts</td>
</tr>
<tr>
<td>Aerospace Electrical & Power Equipment</td>
<td>Solid State Devices</td>
</tr>
<tr>
<td>Aerospace Electrical/Electronic Distribution Systems</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>Aerospace Mechanical & Fluid Systems</td>
<td>Human Systems Integration</td>
</tr>
<tr>
<td>Aerospace Actuation, Control and Fluid Power Systems</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>Aerospace Fuel, Inerting & Lubrication Systems</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>Aerospace Couplings, Fittings, Hose & Tubing Assemblies</td>
<td>System Safety</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerospace Mechanical & Fluid Systems</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Actuation, Control and Fluid Power Systems</td>
<td>Enterprise Information Management & Interoperability</td>
</tr>
<tr>
<td>Aerospace Couplings, Fittings, Hose & Tubing Assemblies</td>
<td>Life Cycle Logistics Supportability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerospace Avionic Systems</th>
<th>SAE Standards Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Systems</td>
<td>1,800 SAE International standards are used in the development of a typical aircraft.</td>
</tr>
<tr>
<td>Aircraft Instruments</td>
<td></td>
</tr>
<tr>
<td>Aerospace Landing Gear Systems</td>
<td></td>
</tr>
<tr>
<td>Aircraft Oxygen Equipment</td>
<td></td>
</tr>
<tr>
<td>Aircraft Lighting Steering</td>
<td></td>
</tr>
<tr>
<td>Aircraft Noise Measure & Noise Aviation Emission Modeling</td>
<td></td>
</tr>
<tr>
<td>Aircraft Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>Aircraft Icing Technology</td>
<td></td>
</tr>
<tr>
<td>Flight Deck & Handling Qualities for Transport Aircraft</td>
<td></td>
</tr>
<tr>
<td>Cabin Safety Provisions</td>
<td></td>
</tr>
<tr>
<td>Aircraft Seat</td>
<td></td>
</tr>
<tr>
<td>Airframe Control Bearings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reliability, Maintainability/Supportability & Probabilistic Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintainability/Supportability</td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>Probabilistic Methods</td>
<td></td>
</tr>
<tr>
<td>Structural Health Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

SAE Standards Development
Delivering a full range of standards development capabilities for global standardization

While consensus-based standards are the cornerstone of the program responsible for developing more vehicle technical standards than any other organization, SAE International also offers various supporting programs, consortia administration, database services, and accreditation.

Standards Consortium Administration
Often, to affect industry change on a global scale, a consortium of ideas, resources, and management are required. With over a century of experience, SAE can be a key component in developing any consortium-based activity, providing the expertise, the experience, and worldwide technological and human resources to help turn visions into successful operating realities. By capitalizing on the operational skills that SAE can provide (from legal and fiscal oversight; to publishing and marketing), clients remain focused on completing the true work at hand as quickly, efficiently, and thoroughly as possible.

Cooperative Research Program
“Advancement” for companies almost certainly means soaring investments in the research, design, development, and testing of new products and systems. The SAE Cooperative Research Program offers an economical pathway for the data needed for that advancement as it allows for the pooling of financial resources, affords each participant more efficient use of their research budgets, and eliminates duplication of efforts in the study of pre-competitive technical areas.

Database Creation and Management
SAE can assist with the development, implementation, maintenance, and management of customized databases. The World Manufacturers Identifier (WMI) Vehicle Identification Number (VIN) is an example of a database for which SAE has been contracted, in this case by the Highway Traffic Safety Administration (NHTSA). The International Aerospace Quality Group (IAOG) asked SAE to house and maintain the OASIS (Online Aerospace Supplier Information System) database, which enables worldwide aerospace suppliers the ability to verify their audited compliance to quality specifications. Among other programs in which SAE is involved are SAE Certified Power ™ and the MAC Manufacturers Database.

Accreditation and Certification
The Performance Review Institute (PRI), an affiliate of SAE, administers Nadcap, the industry-managed approach to special process quality conformity assessment. Nadcap brings together technical experts from industry to establish accreditation criteria, certify suppliers, and drive improvements down the supply chain. Other key programs include eQuaLearn professional development and the eQuaLified personnel qualification scheme.

Committee Management
SAE’s 11,000 documents are authored and updated by the efforts of industry engineers, managers, and leaders from manufacturers, suppliers, and government/regulatory agencies worldwide who voluntarily serve on SAE’s 700 technical committees. With over 100 years of global consensus standards development and distribution SAE has the proven ability to:
- create new committees to meet new and evolving needs quickly and efficiently
- offer processes for timely and efficient standards creation
- leverage the expertise in committees across the program to solve technical challenges
100 + years of experience... a strong administrative infrastructure... the leading source for vehicle standards development

• SAE’s Standards Program has one of the fastest development cycles of any organization and is capable of creating a standard in as little as 29 days.

• A dedicated SAE staff is equipped with engineering and project management skills to aid in the administrative details required for facilitating committee work and standards development.

• Standards are developed in regularly scheduled meetings—both face-to-face and web-based to facilitate global interaction—and are strongly attended.

• Secure, 24/7 on-line forums, and web-based technology manages and tracks document creation and revision from inception to balloting to distribution, facilitating worldwide access to the development of global standards.

• As the world’s largest consensus-based mobility standards producer, it offers the unique ability to develop, publish, package, license, and distribute documents to assure reaching the broadest possible market.

• Delivers a full range of standard development capabilities from consensus to consortium-based.

• A strong technical committee structure with global rosters of the highest caliber that can assist in creating standards on any segment within the life cycle of an aerospace or ground vehicle.
Participation and support means “influence.” The single, most important benefit of being involved in SAE Standards Development is the technical, strategic, and leadership influence it offers participants on the design, engineering, and manufacture of vehicles and the global mobility industry. The degree of that influence depends solely on the role you and/or your company wish to play.

What do you want to do?
See influence options on the following page...
In conclusion, the SAE International Standards Development Program provides individuals, companies, and industry the opportunity to grow, influence, and prosper.
Experience the benefits strategic standardization can offer.

Organizations...

experience these immediate benefits:
• International visibility; venue for showcasing company’s technical capabilities; corporate image as an industry leader is enhanced
• Opportunity to gain insight into other company’s solutions to current/future challenges
• Access to engineers and experts from around the world and the opportunity to build strong relationships with customers and suppliers
• The development of personnel; enhanced credibility and image of staff’s technical expertise
• Competitive intelligence through advance knowledge of standard direction
• Advance warning of pending regulations and influence over the technical basis of the regulation
• Reduced commercial risks through lower development costs due to knowledge and experience shared among participants
• Improved ability to identify future trends due to research conducted during the development of the standard
• The capability to influence resulting standards and industry’s technical agenda
• Association with the leading society for advancing mobility technology

Committee participants ...

enjoy these immediate benefits:
• Relationships and contacts that can become technical resources
• Enhance your knowledge base by learning from other product developers and users from around the world
• Professional development in the areas of change management, organizational development, facilitation, conflict resolution, project management, decision making
• Peer recognition for advancing your industry’s technologies
• Discover emerging technologies
• Contribute to the industry’s body of technical knowledge
• Associate with the leading society for advancing mobility technology
THE ULTIMATE KNOWLEDGE SOURCE FOR MOBILITY ENGINEERING