SAE, CATARC LAUNCH HISTORIC STANDARDS COOPERATION AGREEMENT

SAE International and China’s Automotive Technology and Research Center (CATARC) have agreed to a joint cooperation on key technical standards issues related to clean-vehicle technologies and safety.

The memo of understanding (MOU), signed April 25 at SAE Automotive Headquarters in Troy, MI, will serve as a master operating agreement for cooperation in technology standards for the two organizations and their constituents.

The agreement focuses on various key technical standards development areas including battery safety and testing for EVs, hybrids, and plug-in hybrids, and

...continued on next page
“CATARC’s authoritative position and technical capability in China, combined with the global expertise, speed and rigor of SAE’s standards development process creates a robust platform for substantive advancements in this new automotive era,” said Schutt. “We look forward to the new levels of technical exchange this will bring and the resulting progress in meeting global industry needs.”

SAE INTERNATIONAL HEADING DOE-FUNDED INTEROPERABILITY PROJECT FOR ELECTRIC VEHICLES

SAE International is assisting in the management of an interoperability project, funded by the U.S. Department of Energy, for plug-in electric vehicles. As part of the project, SAE will solicit the input of OEMs and electric vehicle supply equipment manufacturers (EVSE) to develop industry standards and testing procedures for plug-in electric vehicles and charging stations. As manufacturers seek greater acceptance of plug-in vehicles, they face the challenges of creating a reliable, easy-to-use infrastructure for recharging and uniform testing procedures. These standards and procedures will increase public confidence and acceptance of plug-in electric vehicles by ensuring that the vehicles are able to accept a charge from charging stations manufactured by multiple manufacturers.

As manufacturers seek greater acceptance of plug-in vehicles, they face the challenges of creating a reliable, easy-to-use infrastructure for recharging and uniform testing procedures. These standards and procedures will increase public confidence and acceptance of plug-in electric vehicles by ensuring that the vehicles are able to accept a charge from charging stations manufactured by multiple manufacturers.

SAE is performing the work under contract with ECOTactility, which has been contracted by the Department of Energy to address advanced vehicle technologies. “This is an essential step toward overcoming one of the hurdles which has been contracted by the Department of Energy to address advanced vehicle technologies.” said Keith Wilson, Technical Project Manager for SAE International. “The public needs convenience of use, reliability and safety. Once uniform standards have been developed for recharging stations, we will have helped to address some of the current concerns about electric vehicle charging.”

As with most new technologies, testing procedures are largely internal – conducted by OEMs and EVSE manufacturers. The interoperability project will result in uniform standards and testing procedures for wide-spread industry use.

“Once the SAE J2953 Interoperability Technical Committee completes the development of uniform standards and testing procedures, the likelihood of interoperability problems will decrease dramatically,” Wilson said. “The industry understands the value of successfully completing this next step. That is why we have the support of both OEM and EVSE manufacturers for this important project. Simply put, it’s critical to the future success of electric vehicles and their widespread acceptance by the public.”

The uniform testing procedures will be developed for SAE International’s standard, “J9953/2 Test Procedures for the Plug-in Electric Vehicle (PEV) Interoperability with Electric Vehicle Supply Equipment (EVSE).” OEMs, EVSE manufacturers and other parties interested in participating in the interoperability project should contact Keith Wilson via email at kwilson@sae.org.

STANDARDS ON STRANDED ENERGY IN DEVELOPMENT

Adapted from an article previously published in “Automotive Engineering International Online”

As the electric vehicle industry continues to evolve, one of its focus areas is stranded energy – the residual charge or stored energy left in a battery after an automobile accident that cannot be directly accessed but still poses a potential shock or fire hazard.

While several potential solutions exist for stranded energy, there is no standardized method for discharging damaged or used batteries, according to Rich Byczek, Global Technical Lead, Electric Vehicle & Energy Storage, Intertek, a global testing and certification company at the forefront of stranded energy standards development and testing.

The SAE International Battery Standards Fuel Gauge Committee is currently developing “SAE J3009: Stranded Energy – Reporting and Extraction from Vehicle Electrochemical Storage Systems.” In addition, the SAE Battery Field Discharge and Disconnect Committee is working to develop a standard method and interface for the field discharge of live batteries. The development of such standards is critical for several reasons, said Byczek. “Without diagnostic capabilities, the state of the battery is unknown,” he said. “Charge left in a battery after an automobile accident poses great risk to secondary responders including tow truck operators, dealerships and vehicle repair shops. These responders need to have a standardized protocol for accessing the internals of the battery and safely discharging it.”

Currently, he said, there are two potential solutions for dealing with stranded energy. The “suitcase tester” combines the efforts of both the NHTSA (National Highway Traffic Safety Administration) and SAE committees. This solution would require all automakers to accept a standardized battery high voltage (HV) port that could be accessed by a single discharge tool. All tow truck operators would be able to use this tool to examine the status of the battery and remove stranded energy before proceeding with vehicle towing.

The second potential solution is an automatic self-discharge system. In the event of an automobile accident and the automatic disconnection of the vehicle’s HV system, the battery would automatically self-discharge. “Neither of these solutions is without issue,” said Byczek, “but both are an important step toward a standardized stranded energy solution. As members of the EV industry continue to work toward ensuring the safety of secondary responders, EV manufacturers must prepare for a new wave of standards and the new testing and certification requirements that accompany them.”

ENGINEERING AIDS FROM SAE

SAE provides products that support testing procedures set forth in SAE standards, Recommended Practices, Information Reports, and other SAE documents including the OSCAR H-Point Machine, which is used in the design of seating and interior packages and in conjunction with SAE J826 (rev. 1995), FMVSS regulations, and ISO standards—making it the required design and auditing tool for current production. Also available is the newly designed HPM II H-Point Machine, which includes enhancements over the OSCAR H-Point machine for use in advance design applications. Available at http://store.sae.org/sa/.
HYDROGEN FUELING INFRASTRUCTURE STANDARD TO BE UPDATED

Adapted from an article previously published in “Automotive Engineering International Online”

Jesse Schneider, Chair of SAE’s J2601 Working Group on Hydrogen Fueling Protocol, gave an update on the standard (originally issued in 2010) during a presentation on hydrogen fueling standardization at the SAE 2013 World Congress in April. J2601 has been validated in the field, worldwide, successfully for three years, and we are using these experiences and laboratory testing to standardize J2601 in 2013,” he said.

The update to J2601, created by a multinational team of automakers, fuel providers, and government entities working toward a common goal of making a harmonized world hydrogen fueling protocol, will help the implementation of the first phase of fuel cell vehicle commercial deployment in 2015.

A number of hydrogen stations worldwide have been built in accordance with J2601. The effectiveness of J2601 gives a 3- to 5-minute fueling time, while giving fuel cell vehicles a range of greater than 300 mi (500 km), Schneider said.

SAE J2601 won this year’s SAE Environmental Engineering for Transportation Award (E2T) that Schneider accepted on behalf of the team on April 16.

NEW MAC DATABASE ACTIVITY FOLLOWS RECENT UPDATE TO SAE J2911

The January 2013 revision of “SAE J2911: Procedure for Certification That Requirements For Mobile Air Conditioning System Components, Service Equipment and Service Technician Training Meet SAE J Standards” has resulted in the necessity for additional components and equipment to be registered and certified in SAE International’s MAC Conformance Database.

The conformance program assures users of MAC components and equipment (as well as technician training) that the manufacturers and providers are following and meeting the performance criteria set by SAE standards.

The revised J2911 document also noted that equipment that was previously labeled as “approved” by SAE had a 90-day grandfather period, which expired May 1, after which that equipment needed to be registered in the database. As a result of this, nearly 20 additional companies have now registered in the database.

Additionally, a new process is in place in the database by which a company can now challenge a certification if it believes a conformance claim by another entity is not correct. Following a process outlined in the recent revision to J2911, SAE will note that the challenge has been issued, alert the challenged manufacturer or provider, and request and present a response.

For more information on the MAC Manufacturer Database, visit http://macdb.sae.org, or contact Program Manager Gary Pollak at gary@sae.org.

STANDARDS CONSORTIUM ADMINISTRATION

With over a century of experience providing the common engineering requirements for new mobility vehicles, SAE can be a key component in developing any consortium-based activity, providing the expertise and worldwide technological and human resources to help you turn your vision into a successful operating reality.

Each client maintains its desired degree of autonomy, flexibility, and control. Client/project-tailored services include:

- A legal framework
- Fiscal oversight
- Policy and procedure development
- Publishing and distribution services
- Marketing and public relations activities

MAC REFRIGERANT BLEND COOPERATIVE RESEARCH PROJECT ISSUES WHITE PAPER ON LOW GWP BLENDED REFRIGERANTS

The SAE International MAC Refrigerant Blend Cooperative Research Project (MRB CRP), comprised of a group of leading global vehicle OEMs plus Tier One suppliers, has continued its assessment of the operating, technical and safety performance of low GWP blended refrigerants (ACS and ACE) developed by Mexichem, and based upon R-1234zeE.

The MRB CRP team is now sharing a technical White Paper, “Development and Evaluation of ACS and ACE Refrigerants for MAC Applications,” about these blends. The White Paper, available at http://www.sae.org/standardsdev/tsb/cooperative/mrb-ac6_white_paper.pdf, is based upon information previously reported at the SAE Thermal Management System Symposium in October 2012, and more recently updated at UNEP Round Table on New Technology in Refrigeration and Air Conditioning held in Milan on 7 June 2013.

The team continues its work on Phase III tasks described in the White Paper which will be completed in the third quarter of 2013 and presented at the 2013 SAE Thermal Management System Symposium in October.

Sponsors of the MRB CRP include Bierh, Bosch, Chrysler, Cinetic Filling, Daimler, Denso, Doowon, General Motors, Halla Visteon Climate Control, Hyundai, Jaguar Land Rover, Mexichem, Nissan, PSA, Renault, SAIC Motors, Sanden, Schrader International, TEXA, and Volvo Cars.

SAE COOPERATIVE RESEARCH PROJECT PUBLISHES FINAL REPORT ON R-1234YF

The SAE International Cooperative Research Project (CRP1234-4) team has published a final report confirming that R-1234yf is safe to use in automotive direct expansion air conditioning systems.

As previously reported, the estimated overall risk of vehicle fire exposure attributed to use of R-1234yf is conservatively estimated at 3 x 10-12 events per vehicle operating hour. This is nearly six orders of magnitude less than the current risk of vehicle fires due to all causes (approximately 1 x 10-6 per vehicle operating hour) and also well below other risks accepted by the general public.

All OEMs in the new CRP have indicated agreement with these conclusions. The members are: Chrysler/Fiat, Ford, General Motors, Honda, Hyundai, Jaguar Land Rover, Mazda, PSA, Renault and Toyota.

Photo from 15-May-2012 Automotive Engineering International Online
The convergence of electronics technologies across the transportation sectors, and with the consumer electronics industry, brings challenges and opportunities to product and standards development. Jim Buczkowski, SAE’s new Cross-Industry Standards Advisor for Vehicle Electronics & Innovation Integration, recently spoke with SAE Magazine Senior Editor Lindsay Brook about the profound changes taking place. Buczkowski is a Ford Motor Co.’s Director of Electrical and Electronics Systems and a Henry Ford Technical Fellow. The following Q&A was edited for length; the entire interview can be read at aei-online.com.

Q: Where is the common ground between Automotive, Aerospace, and Commercial Vehicle electronics going forward?

The common point is the consumer. Electronics are allowing the consumer to blend all the facets of their life, whether it’s in the car, in an aircraft, at home, and in other places. The consumer electronics industry tends to lead in terms of technology. While they don’t have the risks, regulations, and the testing rigor that Automotive and Aerospace have to deal with—things like electromagnetic interference, for example— they set the expectations for the kinds of experiences customers want, no matter where they are.

The industry sectors have a stake in working more closely and effectively together so we can provide solutions for consumers to use portable devices more seamlessly between their various environments.

Q: Looking at the common HMIs issues among light vehicles, aircraft, and trucks and heavy equipment, can those various industries teach each other about minimizing operator distraction?

Yes, and there are different aspects of it, too. In aircraft there is a lot of training required before a person can get behind the ‘stick’ and in heavy equipment, too. But we accept the challenge: People want a lot of capability, but they want it very simple and intuitive. I don’t think those two are in conflict with each other. We have learning systems that are getting smarter and algorithms that are getting better all the time. It is possible to use technology to help us have very adaptable systems and algorithms that are getting better all the time. It is possible to quickly tap into these start-ups that are trying out ideas and moving them forward very quickly.

Q: What’s going on in Silicon Valley? Ford, like other OEMs, has a facility there to allow your scientists and electronics engineers more freedom of thought and collaboration, so to speak.

Silicon Valley is really a hotbed for innovation, along with some other regions of the world such as Israel and more recently, St. Petersburg, with strong innovation cultures. This is a source of opportunity for us, to establish more collaborative relationships with technology providers. Certainly we’ve got to take it to the step of robustness that’s appropriate in the vehicle. But the ability to quickly tap into these start-ups that are trying out new ideas and moving them forward very quickly is really important.

Q: Are Standards part of that learning opportunity?

Yes. There are certain standards in the consumer electronics business—USB and WiFi for example—that we in automotive don’t have to completely reinvent, as long as they’re applied to certain areas of the vehicle that are connecting to consumer-electronics related products. For example, do we need to have a special design USB standard that’s ‘automotive grade’ for hooking up to a device that just meets the consumer standard?

Q: Autonomous-vehicle development is gaining greater industry and public focus. What role should SAE be playing in this space?

That’s a complicated question. Automated driving is emerging very quickly, as sensor-data fusion capability increases. A lot of areas need to be worked on in terms of specification requirements, particularly around testing and validation. There are some ISO and other standards that help define safe systems that are important. But a lot of work is needed in testing and validation that will build confidence in fully automated driving before we can give it the ‘thumbs-up’ to go to production.

Q: in terms of Electronics standards, what are the key areas the industry can collaborate on?

Interoperability is always very important. Cars are no longer in isolation; we have to constantly consider V2V and V2I communication. Our products need to talk to our competition’s products, as well as to the surrounding infrastructure around the world. While we have to work through proprietary issues, standards will allow us to share across the industry. But it’s a lot more than just a bunch of logical engineers getting together and saying ‘this is the way it’s going to be.’ It will take a broad understanding of regional needs around the world. The challenge is to agree on something quickly.

The session began with an overview of the safety and efficiency requirements, particularly around testing and validation. There is a lot starting on the far end of the research side. There is a lot of work and opportunity in terms of human performance and understanding of cognitive loading, among other areas. There are still a lot of unknowns. There are certain opportunities in workload management and operator fatigue. In the aircraft industry, they have to deal with pilot fatigue.

Q: Ford is a member of the GENIVI alliance. What are the implications of a broad adoption of an in-vehicle infotainment open-source platform?

It’s a complex subject. I can argue both sides of the equation but what’s important to us is to really focus on where we can differentiate for our customers in terms of the experiences we create and the value they see in those experiences that are associated with Ford. So things like operating systems and drivers, all the stuff that’s buried behind the scene, customers don’t care about. An OS, for example, is just not going to be a differentiator for a customer. What’s important is what we build on top of these enablers and infrastructure. In the end people are going to compare us on the experiences we bring to the car, not the technology we use.

Q: What’s going on in Silicon Valley? Ford, like other OEMs, has a facility there to allow your scientists and electronics engineers more freedom of thought and collaboration, so to speak.

Silicon Valley is really a hotbed for innovation, along with some other regions of the world such as Israel and more recently, St. Petersburg, with strong innovation cultures. This is a source of opportunity for us, to establish more collaborative relationships with technology providers. Certainly we’ve got to take it to the step of robustness that’s appropriate in the vehicle. But the ability to quickly tap into these start-ups that are trying out new ideas and moving them forward very quickly is really important.

Q: Are Standards part of that learning opportunity?

Yes. There are certain standards in the consumer electronics business—USB and WiFi for example—that we in automotive don’t have to completely reinvent, as long as they’re applied to certain areas of the vehicle that are connecting to consumer-electronics related products. For example, do we need to have a special design USB standard that’s ‘automotive grade’ for hooking up to a device that just meets the consumer standard?

There are a lot of unknowns. There are certain opportunities in workload management and operator fatigue. In the aircraft industry, they have to deal with pilot fatigue.

Q: Ford is a member of the GENIVI alliance. What are the implications of a broad adoption of an in-vehicle infotainment open-source platform?

It’s a complex subject. I can argue both sides of the equation but what’s important to us is to really focus on where we can differentiate for our customers in terms of the experiences we create and the value they see in those experiences that are associated with Ford. So things like operating systems and drivers, all the stuff that’s buried behind the scene, customers don’t care about. An OS, for example, is just not going to be a differentiator for a customer. What’s important is what we build on top of these enablers and infrastructure. In the end people are going to compare us on the experiences we bring to the car, not the technology we use.

Q: What’s going on in Silicon Valley? Ford, like other OEMs, has a facility there to allow your scientists and electronics engineers more freedom of thought and collaboration, so to speak.

Silicon Valley is really a hotbed for innovation, along with some other regions of the world such as Israel and more recently, St. Petersburg, with strong innovation cultures. This is a source of opportunity for us, to establish more collaborative relationships with technology providers. Certainly we’ve got to take it to the step of robustness that’s appropriate in the vehicle. But the ability to quickly tap into these start-ups that are trying out new ideas and moving them forward very quickly is really important.

Q: Are Standards part of that learning opportunity?

Yes. There are certain standards in the consumer electronics business—USB and WiFi for example—that we in automotive don’t have to completely reinvent, as long as they’re applied to certain areas of the vehicle that are connecting to consumer-electronics related products. For example, do we need to have a special design USB standard that’s ‘automotive grade’ for hooking up to a device that just meets the consumer standard?

There are a lot of unknowns. There are certain opportunities in workload management and operator fatigue. In the aircraft industry, they have to deal with pilot fatigue.

Q: Ford is a member of the GENIVI alliance. What are the implications of a broad adoption of an in-vehicle infotainment open-source platform?

It’s a complex subject. I can argue both sides of the equation but what’s important to us is to really focus on where we can differentiate for our customers in terms of the experiences we create and the value they see in those experiences that are associated with Ford. So things like operating systems and drivers, all the stuff that’s buried behind the scene, customers don’t care about. An OS, for example, is just not going to be a differentiator for a customer. What’s important is what we build on top of these enablers and infrastructure. In the end people are going to compare us on the experiences we bring to the car, not the technology we use.

Q: What’s going on in Silicon Valley? Ford, like other OEMs, has a facility there to allow your scientists and electronics engineers more freedom of thought and collaboration, so to speak.

Silicon Valley is really a hotbed for innovation, along with some other regions of the world such as Israel and more recently, St. Petersburg, with strong innovation cultures. This is a source of opportunity for us, to establish more collaborative relationships with technology providers. Certainly we’ve got to take it to the step of robustness that’s appropriate in the vehicle. But the ability to quickly tap into these start-ups that are trying out new ideas and moving them forward very quickly is really important.

Q: Are Standards part of that learning opportunity?

Yes. There are certain standards in the consumer electronics business—USB and WiFi for example—that we in automotive don’t have to completely reinvent, as long as they’re applied to certain areas of the vehicle that are connecting to consumer-electronics related products. For example, do we need to have a special design USB standard that’s ‘automotive grade’ for hooking up to a device that just meets the consumer standard?

There are a lot of unknowns. There are certain opportunities in workload management and operator fatigue. In the aircraft industry, they have to deal with pilot fatigue.

Q: Ford is a member of the GENIVI alliance. What are the implications of a broad adoption of an in-vehicle infotainment open-source platform?

It’s a complex subject. I can argue both sides of the equation but what’s important to us is to really focus on where we can differentiate for our customers in terms of the experiences we create and the value they see in those experiences that are associated with Ford. So things like operating systems and drivers, all the stuff that’s buried behind the scene, customers don’t care about. An OS, for example, is just not going to be a differentiator for a customer. What’s important is what we build on top of these enablers and infrastructure. In the end people are going to compare us on the experiences we bring to the car, not the technology we use.

Q: What’s going on in Silicon Valley? Ford, like other OEMs, has a facility there to allow your scientists and electronics engineers more freedom of thought and collaboration, so to speak.

Silicon Valley is really a hotbed for innovation, along with some other regions of the world such as Israel and more recently, St. Petersburg, with strong innovation cultures. This is a source of opportunity for us, to establish more collaborative relationships with technology providers. Certainly we’ve got to take it to the step of robustness that’s appropriate in the vehicle. But the ability to quickly tap into these start-ups that are trying out new ideas and moving them forward very quickly is really important.

Q: Are Standards part of that learning opportunity?

Yes. There are certain standards in the consumer electronics business—USB and WiFi for example—that we in automotive don’t have to completely reinvent, as long as they’re applied to certain areas of the vehicle that are connecting to consumer-electronics related products. For example, do we need to have a special design USB standard that’s ‘automotive grade’ for hooking up to a device that just meets the consumer standard?
SAE INTERNATIONAL/IEEE CYBERSECURITY FOR THE TRANSPORTATION INDUSTRY MEETING

SAE international paired with IEEE to develop the CyberSecurity for the Transportation Industry Meeting that was held on September 23, 2013 at the Palais des congrès de Montréal in Montreal, Quebec.

This one-day technical symposium addressed critical issues surrounding the security in the networking of current and future vehicles. No particular style of vehicle was discussed, as this broad spectrum covers anything from manned to unmanned vehicles, whether they move on land or in the air.

The meeting was attended by academic experts and leaders in the cybersecurity industry, which, paired with skilled members of the automotive, aerospace, rail, and commercial vehicle industries worked to improve and solve issues that are plaguing each of the industries.

The meeting addressed many issues, but a few primary issues were discussed. First and foremost, many are concerned with the legitimacy of cybersecurity risks and how to decipher between real and fictitious threats. Naturally, companies are concerned about the pertinence of cybersecurity on their own products or services. And, taking it a bit further, the conference discussed the common cybersecurity issues that intersect between industries.

The importance of addressing these issues has never been more important due to the recent growth in cyber threats in transportation. This has caused concern for both stakeholders and consumers, which makes it a pressing matter for the entire market.

AN ECONOMICAL PATHWAY FOR JOINT VENTURE RESEARCH: THE COOPERATIVE RESEARCH PROGRAM OF SAE

Cooperative research ventures serve to bring more minds to the challenges and issues faced by industry. The result is a more robust project than each participating organization could complete independently. The pooling of financial resources also affords each participant more efficient use of their research budgets and eliminates duplication of efforts. Whether moving forward on the development of fuel cell standards…researching alternative refrigerants…or developing a database of human body measurements to foster ergonomic designs, SAE’s Cooperative Research Program can assist your company in its collaborative research needs.

To learn more contact Gary Pollak, Program Manager +1-724-772-7196; gary@sae.org

SAE GROUND VEHICLE STANDARDS “ON THE ROAD”

Jack Pokrzywa, Ground Vehicle Standards Business Unit Leader, reviewed SAE’s Ground Vehicle Standards program during a KSae standardization forum which was a part of the Spring KSae Conference in Korea. SAE is invited to provide updates and review collaborative opportunities with KSae staff and members.

SAE Staff attended the First Global Symposium on Connected Vehicles and Infrastructure, organized by University of Michigan Transportation Research Institute (UMTRI), in Ann Arbor, Michigan, May 14-16. The event brought together leading industry, academic and government experts to discuss and strategize how connected vehicle technology is transforming the transportation industry. SAE Ground Vehicle Standards is collaborating with UMTRI in the Connected Vehicles area.

Jack Pokrzywa moderated the “Technologies From the German Southwest: Ideas for New Mobility Solutions” symposium, organized by the state of Baden-Württemberg, Germany, in Detroit, Michigan on June 4. The symposium connected the local automotive and electric vehicle industry, and the universities, government, utilities, and research and development communities with some of the thought leaders from Baden-Württemberg. The focus was on enhancing the knowledge transfer between Germany and North America in order to help drive the advancements of sustainable mobility in both markets.

Jack Pokrzywa represented the US TAG at the ISO TC22 (Road Vehicles) Plenary meeting in Goteborg, June 10-13. The Strategic Advisory Group (SAG) of TC22 highlighted specific areas for improvement of working processes and stakeholder engagement. The SAG proposed to develop a new organizational structure with a more functional approach and with a limited number of subcommittees.

Shawn Song, SAE Program Manager for China and liaison to CATARC (China Automotive Technology and Research Center), attended the CATARC China Battery Pack Standard Development Meeting in Xiangyang, China on June 25-27. Shawn also attended the July 9-10 kick-off meeting for the new China Battery Storage Standard Development program in YanTai, China. Both events align with SAE’s recent cooperative agreement with CATARC relating to standards development for battery safety and PHEV technology.

Peter Byk, SAE Global Ground Vehicle Standards Technical Project Manager, attended the official opening of the U.S. Department of Energy’s (DoE) Electric Vehicle-Smart Grid Interoperability Center, located at Argonne National Laboratory outside Chicago, on July 18. He took part in a panel discussion on “EV and Smart Grid Standards” where he discussed the role of SAE standards, including SI#2953/1 and SI#2953/2, in supporting electric vehicles.

SAE staff visited NHTSA, the Department of Energy, the Fuel Cell & Hydrogen Energy Association and the National Transportation Safety Board on July 29 to discuss current SAE standards development and their applicability to the work of these organizations.

Gary Pollak, SAE CRP Program Manager, participated in a meeting held by KBA (German Federal Transportation Authority) in Flensburg, Germany the week of August 12. Gary presented the SAE CRP framework while other industry members of the CRP234-4 project team will present safety issue findings of the recent CRP project studying the use R1234yf.

Robert Galyn, Chair of the SAE Battery Steering Committee, and several SAE battery technical committee chair persons, spoke about the work of the SAE battery committees on a battery safety panel at The Battery Show & Charging Infrastructure Expo on September 19 in Novi, Michigan. Keith Wilson, SAE Technical Project Manager also spoke at this conference about automotive industry standards for the safe use of lithium-ion battery packs.

Davie Hartfelder, Chair of SAE International Functional Safety Committee, spoke at CATARC’s Functional Safety International Symposium in Shanghai, China on September 24.

Robert Galyn hosted a workshop in connection with the 5th International Symposium on Electric Vehicle Standards and Regulations, October 9-11 in Ningbo, China. Organized through China’s National Technical Committee of Auto Standardization, the symposium is widely recognized as serving an important role in establishing a communication platform on EV standards for experts from both domestic and international organizations.
The Forum is designed in part for “new” entrants into the electrified vehicle supplier base as well as companies interested in finding low cost alternatives for commercializing innovative EV technologies in China. The Forum’s plenary session, “Strategic Approaches to NEV (New Energy Vehicle) and Advanced/Alternative Powertrain Development” features an in-depth discussion of China’s Energy Saving and New Energy Vehicle Automotive Industry Plan 2012 – 2020 which outlines the government’s incentives; the current status and needs of China’s domestic electrically vehicle technology suppliers; and a contrasting examination of technology development and deployment in the U.S. and other regions. A featured speaker in the plenary is Bill Russo, President and CEO, Synergistics and Senior Advisor, Booz & Company who will present “The Circuits Path to Electrification of China’s Automotive Industry.”

Following the plenary are two independent presentation tracks. The technology track, “Overcoming Technical Barriers to EV Adoption” addresses topics in EV/NEV Charging and Infrastructure; energy management approaches to powertrain integration; and optimal EV/NEV battery operation, control and testing. The business development track, “Developing China’s NEV Supplier Base: Cross-Border Partnership and Collaborative Opportunities” addresses successful partnership and collaborative approaches for building China’s NEV supplier base; finance/equity and investment sources and mechanisms; and services to facilitate cross-border partnerships.

In the business development track, key legal and regulatory advice will be provided by China-based law firms involved in guiding numerous public and private equity, cross-border, arrangements in China. Omarco S. Kanji, Partner, Price Caio PRC Lawyers will present “Risks and Rewards: Balancing Technology Transfer and Market Access” and Edward Lehman of Lehman, Lee & Xu, China Lawyers will present “Successful Approaches to Negotiation and Proper Handling of IP, Patents and Trade Secrets.” In addition, case studies of successful public/private equity joint ventures and technical cooperation agreements will be examined.

For additional information regarding registration for the Forum, please visit: http://www.sae.org/events/nev/.

Packed with more than 3,100 technical papers, 60 technical standards and six e-Books, SAE International launches the “SAE Global Technology Library-Alternative Fuels.” This unique, searchable, online database enables mobility engineering professionals to stay up-to-date and compete in a rapidly changing environment by accessing the most timely, relevant information related to alternative fuels. The Library is the second in a series of new products developed by SAE International over the past year to address the changing needs of the industries we serve. The “SAE Global Technology Library-Electric Vehicle,” launched in June of 2012, covers the latest developments in vehicle electrification worldwide.

According to Michael Thompson, Manager of Electronic Publishing for SAE International, “The concept for the development of our global libraries was to offer our customers product options based on the specific needs of their company or their projects, by technology. In addition to SAE International content, we also include valuable content from other publishers made available through exclusive arrangements.” Thompson added, “The fact that our customers now have access to market leading content, information, data and research all in one location, saves them both time and money which is ultimately beneficial to the end user. At SAE International, we have our finger on the pulse of the industry and see these new product offerings as another way to offer valuable solutions to our customers.

In addition to the SAE International technical papers and standards, and e-Books, the SAE Global Technology-Alternative Fuels” database also includes: convenient access to public and private research from the U.S. National Laboratories; global production data from Lux Research’s seminal Alternative Fuels Data Tracker; global magazine issues and articles; current news and in-depth analysis; website covering a range of topics from world-renowned journalists and publishers.

To learn more about the “SAE Global Technology Library—Alternative Fuels,” or to sign up for a free, two-week trial, visit www.saegl.org/af.

SIE INTERNATIONAL

FOR ON- AND OFF-ROAD HARMONIZED STANDARDS SOLUTIONS, ALL ROADS LEAD TO SAE

Since 1905, SAE International has been providing the common engineering requirements for new mobility products, advanced technologies, and applications. It is uniquely positioned to provide innovative standards solutions to the global on- and off-road industries and their engineering challenges.

For automotive vehicles, SAE plays the central role in developing essential North American emissions and safety standards to meet some of the most stringent regulations in the world. Through ISO, it plays a key role in bringing standards for and from the United States market to the global table. As the center of expertise on Commercial Vehicle/Covag standards development, many of its standards are adopted by ANSI and ISO.

SAE offers a full suite of standards capabilities—committee management, consensus-based standards development, consortium administration, cooperative research, and database development—providing industry, companies, and individuals with extensive opportunities to participate, influence, grow, and prosper.

www.sae.org

DELIVERY OPTIONS FOR SAE TECHNICAL STANDARDS

The more than 10,000 standards in the SAE database now include historical standards, and can be accessed through one of the targeted solutions below:

- SAE Digital Library is the industry’s most comprehensive resource, encompassing 175,000+ technical papers, standards, and related publications from SAE and other renowned organizations. A customizable corporate solution! digitlibrary.sae.org

- SAE Subscriptions are online portfolios of SAE standards or technical papers focused on targeted technologies and industries. subscript@subscriptions.sae.org

- SAE JPaks let you decide how many ground vehicle standards you need and when you need them. Choose from packages that provide up to 10, 15, 25, 35, or 50 downloads per year. sae.org/jpaks

- SAE Ground Vehicle Standards on DVD provides convenient, portable access to more than 2,400 individual standards, recommended practices, and information reports. sae.org/gvstd
SAE INTERNATIONAL HONORS FIVE WITH TECHNICAL STANDARDS BOARD OUTSTANDING ACHIEVEMENT AWARD

Five automotive engineering professionals were honored with the SAE Technical Standards Board Outstanding Achievement Award during the SAE 2013 World Congress, held April in Detroit.

Established in 1953, the Technical Standards Board Outstanding Achievement Award recognizes individuals for outstanding service in the technical committee activities of SAE International. This includes valuable contributions to the work of SAE International technical committees, unusual leadership in the activities of an SAE International technical committee, significant contributions as a representative of SAE International to the accomplishments of technical committees of other organizations or of government agencies, and outstanding contributions to SAE International technical committee work in the form of research, test methods and procedures, and/or development of standards.

Those honored during the SAE World Congress included:
- Robert Broc., Lab Manager, Red Dot Corporation, member of the SAE Operator Accommodation Committee and the Truck and Bus Windshield Wipers and Climate Control Committee
- Tim Duncan, Vice President, Link Engineering Company, active in various SAE brake and friction material committees and related subcommittees
- Thomas J. Poorman, General Manager, North American Lighting, Vice Chairman of two SAE lighting committee groups and sponsor of several SAE J documents

SAE MOTOR VEHICLE COUNCIL CHAIR JIM KELLER REVIEWS ACCOMPLISHMENTS OF PAST TWO YEARS

“I’m proud to be part of SAE’s standards activities,” said Jim Keller, who will remain as Chair of the SAE Motor Vehicle Council for another year.

During Keller’s two-year term, the Motor Vehicle Council (MVC) has expanded, reorganized its structure, improved its relationship with governmental agencies, and increased its direct communication with standards committees.

“The council has a unique view of all the work being done by the industry, and the engineers who contribute to standards on a daily basis,” said Keller, Senior Manager and Chief Engineer, Automobile Technology Research Division, Honda R&D Americas, Inc. “We see the entire breadth and depth of SAE’s activities concerning standards.”

Keller noted the increased level of direct contact between the Motor Vehicle Council and U.S. agencies such as the Department of Transportation, National Highway Safety Administration, Department of Energy, and Environmental Protection Agency as a significant accomplishment over the last few years.

“We’ve really made headway in improving relationships between these agencies and SAE,” he said. “We have frank, face-to-face meetings with each of these agencies once a year. We show them the directions we’re going in and discuss synergies.”

A 29-year member of SAE International, Keller is also pleased about the improved communications between the MVC and SAE’s standards committees.

“We’ve expanded the communication between MVC and other parts of SAE’s standards activities,” he explained, citing an increased number of liaison members to the MVC. “We asked them what their needs were, and they wanted to know what we were doing. They all have a direct connection with us now.”

In addition to the expansion of the council by two members (adding Nissan and Magna International), Keller said that another significant accomplishment over the last two years is the reorganization of the way the MVC is structured in terms of standards activities.

“We now have 18 or 20 people with a direct line to us,” he said. “Our overall goal is to deliver relevant, responsive standards for the mobility sector, and direct communication enables that to happen more quickly.”

CORPORATE CONTRIBUTORS TO THE SAE GROUND VEHICLE STANDARDS DEVELOPMENT PROGRAM (2012)

SAE International acknowledges the following organizations that have funded the standards program this past year—supporters who acknowledge the benefits common engineering requirements bring to industry and their business.

THANK YOU.

General Motors LLC
Chrysler Group LLC
American Honda Motor Co. Inc.
Delphi Corp.
BMW of North America LLC
Toyota Motor Corp.
Nissan
DENSO International America Inc.
Navistar Inc.
East Penn Mfg. Co. Inc.
Curt Manufacturing
Elite Electronic Engineering Inc.
L C Jones Co.
Eaton Corp.
Grote Industries LLC
Electric Power Research Institute
Ford Motor Co.
Sew Eurdrive
BorgWarner Inc.
Cequent
TARDEC
Yamaha Motor Corp. USA
Bendix Commercial Vehicle Systems LLC
Coleman Cable Inc.
Electronics Inc.
AM General LLC
Association of Equipment Manufacturers
Transportation Safety Tech Inc.
Contact mdoyle@sae.org

SAE Standards Development Committees Seek Members

Lend your expertise to the development of tomorrow’s standards. Contacting SAE via the following link http://www.sae.org/standardsdev/participationReq.htm

- Driver Assistance Systems Steering Committee is seeking volunteers for the workgroups:
 - Definitions & Terms
 - Collision Imminent Braking (CIB)/ Automatic Emergency braking Systems (AEB)
 - Sensor Fusion
- Lightweight Vehicle Design Materials & Assembly Technology Committee
- Materials, Processes, and Parts Council Committees, specifically,
 - Acoustical Materials
 - Automotive Adhesives and Sealants
 - Carbon and Alloy Steels
 - Plastics
 - Spring Committee
 - Vibration Control Committee

SAE Standards Development Committees Seek Members

- Capacitive Energy Storage Battery Committee
- Earth Moving Machinery Technical Committee, TC127 USTAG
- Truck & Bus Wheel Committee
- Truck & Bus Aerodynamics & Fuel Economy Committee
- Truck & Bus Corrosion Committee
- Truck & Bus Air Brake Tubing & Tube Fittings Committee
- Driver Vision Technical Standards Committee
- Chassis Controls Committee
- Truck and Bus Active Safety Systems Committee

- Transportation Safety Tech Inc.
- Sensor Fusion
- Driver Assistance Systems Steering Committee is seeking

Contact mdoyle@sae.org
Support standards. Enabling industry to produce vehicles with optimal quality, safety and efficiency.
NEW CHAIRS, NEW COMMITTEES

To all the committee chairs — know that your volunteer efforts are greatly appreciated!

New chairs:
Christopher Jones, BAE Systems Inc.—J1939 Hybrid Communication Task Force
Chuck Trueman, PACCAR Technical Center—Truck and Bus Brake and Stability Control Systems Steering Committee
Ed Heck—Truck Common Tests Technical Steering Committee
Jeremy Harms—Machine Technical Steering Committee
Donald Cuthbert—MTCB, Tire and Rim Committee
Larry Revelino—Trailer Braking Standard Task Force
Greg Dvorachek, Hendrickson—Truck and Bus Brakes Systems Committee
Dan Pridmore, Afton Chemical Corp.—Fuel & Lubricants Council
Don Smolenski, Evonik Oil Additives—Vice Chair, Fuel & Lubricants Council
Angelo Patti, Ford Motor Company—Interior Climate Control Steering Committee
Paul Weisler, Motor Magazine—Interior Climate Control Service Committee
Gene Dianetti, Parker Hannifin Corp.—Interior Climate Control MAC Committee
Curtis Vincent, General Motors LLC—Interior Climate Control Vehicle OEM Committee
Mark Reife, General Motors LLC—Hydraulic Brake Components Standards Committee
Paul Aurand, General Motors LLC—J866 Revision Task Force
Jacob Wright, Denso—J1957 Task Force under Cooling Systems Standards Committee

New chairs on newly formed committees:
• Foundation Brake Steering Committee under Chassis Systems Group—Steve Brown, Retired
• Vehicle Performance Steering Committee under Chassis Systems Group—Steve Karamihalis, UMTI
• Vehicle EE System Diagnostics Steering Committee under Electrical Systems Group—Mark Zachos, OG Technologies
• Electronic Design Automation Steering Committee under Electrical Systems Group—James Lawless, Ford Motor Company
• Ergonomics Steering Committee under Vehicle Engineering Systems Group—Lawrence Smythe, Nissan
• Connected Vehicles Steering Committee under Vehicle Engineering Systems Group—Sue Bai, Honda R&D Americas Inc.
• J2564 Task Force under Vehicle Dynamics Committee—Nicholas Durisek, Dynamic Analysis Group LLC

New chairs on new committees continued from column one...
• Vehicle Stand-Still Management Task Force under Chassis Controls Committee—Richard Nesbitt, Robert Bosch LLC
• J1939 Hybrid Communication Prototyping Task Force under Truck Bus Control and Communications Network Committee—Chris Jones, BAE Systems Inc.
• Truck and Bus J3045 Task Force under Truck and Bus Active Safety Committee—Dan William, TRW Commercial Steering Systems
• Compressibility Task Force under Brake Linings Committee—Richard Kaatz, General Motors LLC
• HD Truck J3053 Task Force under Truck and Bus Electrical Systems Committee—Charlie Groeller, Retired
• J2591 Adaptive Forward Lighting Systems Task Force under the Signaling and Marking Devices Committee—Mike Larsen, General Motors LLC
• Driver Perception Steering Committee under Vehicle Safety Systems Group—Daniel J. Selke, Mercedes
• Occupant Protection and Biomechanics Steering Committee under Vehicle Safety Systems Group—Dr. Annette Irwin, General Motors LLC and Doug Stein, Autoliv
• J1997 Task Force under Cooling Systems Standards Committee—Jacob Wright
• Disc DTV Measurement Standard Task Force under Brake NVH Standards Committee—Mark Reife, General Motors LLC
• J2382 Video based photometry Task Force under Test Methods and Equipment Committee—Mike Piscitelli, Saphire Technical Solutions, LLC
• J2382 Task Force under Test Methods and Equipment Committee—Mike Piscitelli, Saphire Technical Solutions, LLC
• Driver Vehicle Interface Committee under Safety and Human Factors Standards Steering Committee—Linda Angell and Jim Foley, Toyota
• Active Safety Terms and Definitions Task Force under Active Safety Systems Committee—Ron Burton, Transportation Research Center (TRC)
• Driving Performance Operational Definitions (DRIPOD) Committee under Safety and Human Factors Standards Steering Committee—Daniel J. Selke, Mercedes
• DVI Task Force 5—Automated Vehicles and HMI under Driver Vehicle Interface Committee—Amy Klinkenberger and Jay Joseph, Honda

...continued on previous page

SAE: A GLOBAL PARTNER IN STANDARDS DEVELOPMENT

In addition to the maintenance and development of its family of technical standards, SAE International is also an active partner with other standards development organizations, government agencies, and regulatory bodies to support the newest, most robust, and comprehensive standards products for a changing global marketplace.

• US Department of Transportation
• Society of Automotive Engineers of Japan (JSAE)
• German Electrical and Electronic Manufacturers Association (ZVEI)
• US Federal Highway Administration
• China Automotive Technology & Research Center (CATARC)
• Korean Agency for Technology and Standards (KATS)
• US Environmental Protection Agency
• Brazilian National Standards Organization (ABNT)
• US Department of Energy
• Japan Automobile Research Institute (JARI)
• US Environmental Protection Agency
• American National Standards Institute (ANSI)
• Automotive Electronics Council (AEC)
• International Organization for Standardization (ISO); US representative
• VSP Task Force 3 J2889-I under Vehicle Sound for Pedestrians Committee—Doug Moore, General Motors LLC

Newly formed committees:
• SPAt-Map Subcommittee under DSRC (Dedicated Short Range Communication) Committee
• Active Safety CIB-AEB Task Force under Active Safety Systems Committee
• Active Safety System Sensors under Active Safety Systems Committee
• Pedestrian Protection EDR Parameters under Event Data Recorder Committee

Interested in volunteering your expertise on these newly formed committees? Contact SAE via the following link http://www.sae.org/standardsdev/participationReq.htm

...continued on next page
These following individuals have served as active committee members and have dedicated their time and talent in guiding the development of standards documents from the preparation of all drafts through balloting and publication.

Thank you.

Pamela Amette
Pete Chisholm
Gregory Knott
Timothy Bowen
Thomas Carroll
Stephen Curley
Clifford Geigle
Steven Uhrich
Steve Neva
Kerry Cone
Colton Anderson
James Crow
Colton Anderson
Craig Percy
Curtis Inmaner
Michael Brunet
Michael Covitch
Donald Smolskis
Greg Drvorak
Randall Petresh
Thomas Soupal
William C Fisher
John Hall
James Chini
Thomas Klena
Joseph Pacuit
Richard Wood
Mike Meleck
Charles Grossoer
Phillip Ramos
Ronald Landman
Mark Stepper
Steven Monthey
Sandra Niks
Charles Moritz
Randy Dickerman
Peter Bailey
Ronald Strong
Joe Greenslade
Roy Pack
William Curtiss
Sandra Niks
Le Yu
James Miller
Motorcycle Industry Council Inc
Mercury Marine
Outdoor Power Equipment Institute Inc
Naval Sea Systems Command
Sargec Controls & Aerospace
John Doer & Co
Vermaer Corporation
Doosan Infracore
Caterpillar
Timyo Inc
Caterpillar
All Test & Inspection Inc
Link Bilt Construction Equipment Co
Manitowoc Cranes Group
Lubrizol Corp
Evonik Oil Additives
Hendrickson
Haldea Commercial Vehicle Systems Inc
Meritor Wabco
Parker Hannifin Corp
JCH Consulting Company
Indiana Mills & Mfg. Inc
TRW Automotive US LLC
Tire & Rim Assoc
Solus-Solutions and Technologies
Cooper Industries Inc
Phlotion International
Cummins Inc
Rhein Chemie Corporation
Blachford Inc
Chrysler Group LLC
Dover AG
Industrial Fasteners Inc
Ford Motor Co
Deere & Company

Phillip Robinson
Mark Place
Robert Mackey
Joseph Stratton
Russell Dennis JR
William Haughey
William Comish
Carlos Aquileo
David Funell
Michael
Haldenwanger
William Hill
Uwe Melsner
Stephan Bouhana
Keith Armitage
Kin May
Poul Andersen
Arnold Nielsen
Frederick Kelley
Trevor Maynard
Steven Cummings
Jeffrey Smith
Glen Schaffer
Robert Boyd
Pamela Graham
Don Schomer
Stephen Brown
Marion Pottinger
Richard Scholer
Jianzhong Jiao
Michael Larsen
Walter Ross
Charles Polley
Michael Larsen
Thomas Pomerant
Robert Czajkowski
Carl Micu
Annette Irwin
Scott Willis
John Kremer
Anthony Grzesiak
Jacob Hohn
Perry Wyatt
Lisa Podole
Carl Munch
Air-Way Manufacturing Corp
Main Manufacturing Products
Leading Edge Hydraulics
WJAB Enterprises Inc
Navistar Defense
Link Engineering Company
Autoliv North America Inc
General Motors Co
Collision Research & Analysis Inc
Ford Motor Co
General Motors Co
Youngstown State University Inc
Arnie Nielsen Consulting
Profesible Wire LLC
USDA Forest Service
Chrysler LLC
Vee Engineering

SAE International
www.sae.org/standards/
NEW, REVISED & STABILIZED SAE STANDARDS (JUNE, JULY & AUGUST 2013)

To browse all standards http://standards.sae.org/all/

<table>
<thead>
<tr>
<th>Document</th>
<th>Committee</th>
<th>Status</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>J113/26_201305</td>
<td>TEVEES17 Revised</td>
<td>Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields</td>
<td></td>
</tr>
<tr>
<td>J240_201305</td>
<td>TEVP5 Stabilized</td>
<td>Flywheel Spin Test Procedure</td>
<td></td>
</tr>
<tr>
<td>J248_201305</td>
<td>TERMTS2 Stabilized</td>
<td>Marine Circuit Breakers</td>
<td></td>
</tr>
<tr>
<td>J502_201305</td>
<td>TEMSFCCS1 Revised</td>
<td>Connections for Fluid Power and General Use - Hydraulic Couplings - Diagnostic</td>
<td></td>
</tr>
<tr>
<td>J737_201305</td>
<td>TEVFSS Stabilized</td>
<td>Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation</td>
<td></td>
</tr>
<tr>
<td>J747_201305</td>
<td>TEVFSS Stabilized</td>
<td>Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives</td>
<td></td>
</tr>
<tr>
<td>J793_201305</td>
<td>TECMTCS2 Revised</td>
<td>Self-Propelled Sweepers and Scrubbers Tank and Hopper Capacity Rating</td>
<td></td>
</tr>
<tr>
<td>J79_201305</td>
<td>TETCHS3 Stabilized</td>
<td>Labeling - Disc Wheels and Demountable Rims - Trucks</td>
<td></td>
</tr>
<tr>
<td>J2027_201305</td>
<td>TEVFSS Revised</td>
<td>Standard for Protective Covers for Gasoline Fuel Line Tubing</td>
<td></td>
</tr>
<tr>
<td>J213_201305</td>
<td>TEVTDT3S Revised</td>
<td>Automatic Transmission Intake Filter Test Procedure</td>
<td></td>
</tr>
<tr>
<td>J244_201305</td>
<td>TECMTCS2 Revised</td>
<td>Self-Propelled Sweepers and Scrubbers Battery Run-Time</td>
<td></td>
</tr>
<tr>
<td>J259_201305</td>
<td>TEMSFCCS5 Revised</td>
<td>Carbon Steel Tubing for General Use - Understanding Nondestructive Testing for Carbon Steel Tubing</td>
<td></td>
</tr>
<tr>
<td>J2650_201305</td>
<td>TEVLC54 Revised</td>
<td>Performance Requirements for Light Emitting Diode (LED) Road Illumination Devices</td>
<td></td>
</tr>
<tr>
<td>J2836/6_201305</td>
<td>TEVHYB Issued</td>
<td>Use Cases for Wireless Charging Communication for Plug-in Electric Vehicles</td>
<td></td>
</tr>
<tr>
<td>J301_201305</td>
<td>TETCB85 Revised</td>
<td>Automotive Air Brake Line Couplers (Glandheads)</td>
<td></td>
</tr>
<tr>
<td>J063_201306</td>
<td>TECDORMS31 Revised</td>
<td>Cantilevered Boom Crane Structures - Method of Test</td>
<td></td>
</tr>
<tr>
<td>J334_201306</td>
<td>TECRBS8 Stabilized</td>
<td>Metric Nonmatal Air Brake System Tubing</td>
<td></td>
</tr>
<tr>
<td>J698/3_201306</td>
<td>TEVEVD1 Issued</td>
<td>Event Data Recorder - Compliance Assessment</td>
<td></td>
</tr>
<tr>
<td>J805_201306</td>
<td>TECOPTC33 Stabilized</td>
<td>Sound Power Level Measurements of Work Machines - Static and In-Place Dynamic Methods</td>
<td></td>
</tr>
<tr>
<td>J812_201306</td>
<td>TEVEE17 Revised</td>
<td>Function Performance Status Classification for EMC Immunity Testing</td>
<td></td>
</tr>
<tr>
<td>J229_201306</td>
<td>TEVBSC7 Stabilized</td>
<td>Service Brake Structural Integrity Test Procedure - Passenger Car</td>
<td></td>
</tr>
<tr>
<td>J2601/3_201306</td>
<td>TEVFIC Issued</td>
<td>Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks</td>
<td></td>
</tr>
<tr>
<td>J2965_201306</td>
<td>TEVGIC Issued</td>
<td>Glossary of Terms in Use in Green Innovation and Sustainable Practices in the Automotive Industry</td>
<td></td>
</tr>
<tr>
<td>J2982_201306</td>
<td>TERMIC Revised</td>
<td>Riding Range Test Procedure for On-Highway Electric Motorcycles</td>
<td></td>
</tr>
<tr>
<td>J3003_201306</td>
<td>TEVLC54 Revised</td>
<td>Dimensional Specifications for General Service Sealed Lighting Units</td>
<td></td>
</tr>
<tr>
<td>J369_201306</td>
<td>TEMMPPLPS3 Revised</td>
<td>Flammability of Polymeric Interior Materials - Horizontal Test Method</td>
<td></td>
</tr>
<tr>
<td>J527_201306</td>
<td>TEMSFCCS5 Revised</td>
<td>Brazed Double Wall Low-Carbon Steel Tubing</td>
<td></td>
</tr>
</tbody>
</table>

...continued on previous page
Volunteer today!

Match your expertise with one of the many SAE Technical Standards Development Committees that are writing the common engineering requirements for the advancement of the ground vehicle industry.

Chassis Systems
- Foundation Braking Systems
- Brakes & Wheel of the Ground Vehicle
- Brake Systems Tests Committee
- Wheel Test Standards Committee

Motor Vehicle Council
- Interior Climate Control Systems
- Climate Control Systems Committee
- Interior Climate Control Systems Committee
- HVAC Control Systems Committee

Vehicle Systems
- Interior Climate Control Systems
- Climate Control Systems Committee
- Interior Climate Control Systems Committee
- HVAC Control Systems Committee

Vehicle Engineering Systems
- Interior Climate Control Systems
- Climate Control Systems Committee
- Interior Climate Control Systems Committee
- HVAC Control Systems Committee

Electrical Powertrain
- EV/Hybrid Powertrain Steering Committee
- Hybrid Electric Drive Task Force
- Hybrid Electric Vehicle Technology Task Force
- Hybrid Electric Vehicle Technology Task Force

Electrical Systems
- Electrical Distribution Steering Committee
- Wiring Harness & Remote Sensing Systems Committee
- Circuit Protection and Switch Device Committee

IC Powertrain
- IC Powertrain Steering Committee
- Automatic Transmissions
- Automatic Transmissions
- Automatic Transmissions

Green Technology
- Green Technology Steering Committee
- Green Bio-Materials Task Force

Ground Vehicle Staff
- Jeff Kouraj – gkouraj@sae.org
- Jack Potrza – jgpotra@sae.org
- Mark Sichler – msichler@sae.org
- Mary Doyle – mmdoyle@sae.org

Materials, Processes & Parts Council
- Advanced & Hybrid Powertrain Society
- Hybrid Hybrids
- Hybrid Hybrids
- Hybrid Hybrids

Truck & Bus Council
- Vehicle Size Standardization
- Wheel Size Standardization
- On-Road Autonomous Vehicle
- On-Road Autonomous Vehicle

Construction, Agricultural & Off-Road Machinery Council
- Common Test Technical Steering

Contact Information:
SAE International
(284) 427-2455
www.sae.org

Cooperative Research Projects
- High Strain Rate Materials
- Hydrogen Safety
- Hydrogen Safety
- Hydrogen Safety

SAE International

SAE International

SAE International