2017 DoD
Maintenance
Innovation
Challenge

Additive Manufacturing for Masking 76 PMXG Thermal Spray

Dr. Michael Lucis
76th Propulsion Maintenance Group
Tinker AFB
Michael.lucis@us.af.mil

Thermal Spray Basics

- Used to apply a variety of coatings for different applications
 - Dimensional restoration
 - Wear/ corrosion resistance
 - Abradables
 - Thermal barrier coatings
- High temperatures and velocities
 - For plasma spray:
 - Particle temperatures: 3500°F 5500°F
 - Particle velocity: 100 200 m/s (225 450 MPH)
 - Part temperatures: 200 500°F

Why do we need a new way to mask?

- Currently there are 2 common masking methods:
 - Glass fiber reinforced tape
 - Can be used on just about any part
 - Time consuming and expensive
 - Silicone rubber
 - Repeatable, cheap, and fast
 - Often difficult to acquire for military engines and can have long lead times

Sost to mask per part

3D Printed Masking for TS

Cost Comparison

Coatings Tested (Partnership with AIM-MRO)

Process	Coatings tested	Solutions
Plasma (metallics)	Ni-Al, Ni-Cr-Al, Inconel 718, Cu-Al	Polycarbonate (PC) Ultem 1010
Plasma (ceramics)	TBC, Al-O, Tungsten carbide	Ultem 1010
Wire arc	Ni-Al	PC, Ultem 1010
Shot peen	Cut wire, Ceramic bead, Glass bead	PC, Ultem 9085, ABS
HVOF	Ni-Al	No solution to date
Cold spray	Al	No solution to date
Grit blast	Al-O	ABS, PC, Ultem 1010, Ultem 9085

Case study: On demand tooling benefits

- Supply behind on procurement of blades for specific engine line that was leading to a line stop
- Approached by the program office on timeline to stand-up repair of the blades by PMXG
- Previously this would have been a process that took months
 - Approval to send blades to masking vendor
 - Design of silicone mask
 - Cast mold
 - Pour mold to create silicone mask
 - Ship masks to PMXG

Case study: On demand tooling benefits

- Using 3D printed PC masks, repair was qualified and ready in one week
 - Tool designer created 3D model, masks printed overnight
 - Masking tested the next day, 3D model modified and new masks printed overnight
 - Version 2 of the mask sprayed the following day resulting in successful prototype parts

Improved edge definition

 3D printed mask results in a more consistent masking line and a cleaner line that may reduce recycles in post machining

Case study: Cost savings

- Cost to tape each part (3 processes):
 \$592.14
- 3D printed mask: \$678.24
- Estimated yearly repair requirement:58 parts
- Cost avoidance per part (3 processes): \$524.05
- Yearly cost avoidance (including labor costs): \$30,394.90
- Yearly labor savings: 304.5 hours

Conclusions and future work

- Benefits
 - Fully organic process (short lead times)
 - Improved edge retention and repeatability
 - Cheaper than taping for some applications
- Drawbacks
 - For large numbers of parts, not as cost efficient as silicone rubber masking
 - Due to build up of plasma on 3D printed mask that cannot be removed
- Future Work
 - Looking at new ways to strip 3D printed masks, or coat masks before spray to prevent buildup

Questions?

Thank you to my collaborators:

Colton Bohannon (76 PMXG)
Glen Pierce (76 PMXG)
David Ward (76 PMXG)
Shane Kuhlman (76 PMXG)
William Martin (76 PMXG)
Glen Drebes (76 PMXG)
Jason Wolf (AFRL/ RXMS)
Amber Gilbert (AFRL/ RXMS)

Steve Smith (AIM-MRO)
Phil Gettinger (AIM-MRO)
Bill Macy (Macy Consulting)
John Blum (Triton Systems)
John Lovaasen (Triton Systems)
Arthur Gavrin (Triton Systems)