Emerging NDE Technology for Aging Aircraft – Large Area Scanning To Small High Resolution Systems Maintenance Planning Tools

David G. Moore 505.844.7095
Dennis P. Roach 505.844.6078
Sandia National Laboratories
Federal Aviation Administration
Airworthiness Assurance NDI Validation Center
Albuquerque, New Mexico 87185
• Initiated in 1988 under the Aviation Safety Act
• Provides a mechanism to develop, evaluate, and assess new inspection technologies
• Partnerships with industry, academia, and government
What We Do

• Aid in the development of new maintenance inspection techniques, validate improved structural repairs and advanced aircraft designs

• Perform inspection reliability studies

• Provide our customers with comprehensive, independent, and qualitative evaluations of new and enhanced inspection, maintenance, and repair techniques

• Facilitate the transfer of effective technologies into the aviation industry and develop inspection methods on a non-competitive basis
What We Deliver (Information)

Validation, technology transfer, and deployment

Information for inspection improvement (SBs, ADs, alternate-means-of-compliance requests, procedures)

Workshops, meetings, projects to promote technology transfer

Information to improve industry maintenance practices by conducting reliability studies

Support development of new inspection technologies

Ongoing comparisons of conventional & emerging technology
Validation Experiments

A series of focused experiments that quantitatively & qualitatively evaluate NDI techniques through the use of blind testing & specific protocols to arrive at uniform comprehensive assessments.

Consider all factors that affect reliability including inspector, equipment, procedures, and environment – accuracy, sensitivity, repeatability, human factors, versatility, portability, scan rate, cost.

- Disbond Inspection between lap joints
- Corrosion Detection in thin and thick, Multi-Layered Joints
- Surface Crack Detection (lap joints)
- Interlayer Crack Detection (lap joints)
- Widespread Fatigue Damage – 2nd layer cracks in WFD scenario
- Corrosion Detection in Aircraft Joints
- Composite Honeycomb Flaw Detection
- Crack Detection Under-Raised Head Fasteners (1st/2nd layer; Rotorcraft)

FAA William J. Hughes Technical Center
Large Area Inspections

- **Disbond Inspection** Infrared Techniques
- **Corrosion Detection** Scanners (UT, ET)
- **Crack Detection** Scanner (UT, ET) subsurface and first layer
- **Composite Repair and Inspection** new equipment and inspection techniques
Fuselage Disbond Inspection Procedure Using Thermography

Disbonds can be precursors to crack initiation

- Boeing Service Bulletin 747-53A2409 - find disbonds between 1st and 2nd layer
- Can be used to detect 1” x 1” disbonds under 0.10” of skin or less
- Approved in Boeing NDT manuals as a general procedure for all model aircraft
IR Thermography

- Flash lamps heat the inspection surface
- Infrared camera follows the surface cooling
- Computer & image processor make qualitative and quantitative images and plots of the subsurface structure
B747 Experiments

Ultrasonic Inspection

Thermography Inspection

Bonded Doubler

Disbonded Doubler

Disbonded/Bonded Doubler
Corrosion Detection System I

MATERIAL LOSS INDICATIONS

G - 8% MATERIAL LOSS

H - 10% MATERIAL LOSS

I - 5% MATERIAL LOSS

J - 5% MATERIAL LOSS
Pulsed (Transient) Eddy Current (PEC) applies a broadband pulse to a coil and generates a pulse magnetic field.

- Sensor watches decay of the reflected field
- Range of interrogating frequencies to cover surface to deep flaws
- Monitor response by time slice depending on inspection area
Corrosion Detection- System III

- Well developed system fielded for Air Force applications
- Uses commercial ultrasonic transducer
- ACES coupling system is truly dripless
- Accommodates raised fasteners and surface distortions
- Durable and accurate X-Y Scanner
Most of the techniques considered have no problem detecting 14% corrosion in .04 to .1 inch thick aluminum panels.

Two ultrasound techniques have estimated 90% detection rates at approximately the 3% corrosion level.

One eddy-current automated dual frequency technique has an estimated 90% detection rate at approximately the 2% corrosion level.

System II not included in this study.
Crack Detection 1^{st} and 2^{nd} Layer

- Fatigue crack specimens with comparison to industry baseline for conventional techniques deployed at airlines
- Small cracks under fastener heads (0.050”) were stressed
- Improvements accompanied by increased training for optimized signal interpretation
Magneto Optic Imager Device

- Magneto-optic sensor images the perturbations in the magnetic field on a video display
- MOI 308 (1.5-200kHz) with 303 and 307 imager; rotating MOI (circular mag. field)
- Applications corrosion, surface and subsurface fatigue crack detections (transport to GA categories) in commercial and military
- Turbo MOI (prototype) - higher power and better eddy-current excitation for improved depth of penetration

FAA William J. Hughes Technical Center
Rivet Check

- EC distribution based on Self Nulling Probe (NASA)
- Eliminates signal variations associated with probe deployment & rivet misalignment – missed cracks
- Centering display (constant voltage) used to optimize probe position
Interlayer Crack Detection with JENTEK MWM GridStation

- Reliability of conformable probe system to detect cracks around fasteners of 3rd layer

- POD improvements over existing sliding probe procedures, with low false call rates. (0.9 PoD = .125” vs. 0.20+” for conventional NDI)
RFEC Technique for Flat Geometries

- The RFEC probe is designed to focus on the indirect coupling path, so that the signal measured by the pickup coil carries the information of the whole wall-thickness.
- Deeper penetration in detection deep flaws; higher S/N than LFEC
- Higher sensitivity and resolution to small defects
- Minimal signal interpretation is needed
No crack

0.050” crack

Red = 2nd layer; Blue = 1st layer

Bottom of probe showing two coils

Rotation Head

Rotation Guide

Probe Carriage

Test Panel
Composite Inspection

Validation of Ultrasonic Inspections
Six Ply Boron-Epoxy Test Specimen with Engineered Flaws

Embedded Disbond and Delamination Flaws

6 PLY LAMINATE

72 ply composite laminate

Transducer in Weeper Water Column Housing

Gimbal Rotates About X and Y Axis

Water Supply

FAA William J. Hughes Technical Center
Advanced Systems for Composite Inspection

FAA William J. Hughes Technical Center
New Inspection Technologies
• POD curves indicate detection capability comparable to other leading technologies currently in use by commercial and military maintenance facilities.
UT Phased Array

Phased array
- 128 element array with position encoder
- Rubber coupled rotating tire over wet surface
- Pulse-Echo mode
- Initial application – disbonds in thick Airbus wing structure

Principle of operation
- Beam electronically configured and swept along array

![Image of phased array](ultrasonic-wheel-array-sensor-instrument-NYT-Solutions-Ltd)
Results - wing (exfoliation corrosion)

- UWASI scan
 - 0.8 mm resolution
 - 100 mm x 400 mm area
 - Scan time 8 seconds
 - Pulse echo
 - Backwall echo gating
Summary

• The AANC provides a focal point for FAA nondestructive evaluation activities related to assessing advanced aircraft maintenance technologies and transferring the technology to use.

• As these technologies mature, the Center will continue to evolve and assess new technologies in order to fulfill the long term commitment to the FAA and aviation industry.
Questions?

http://www.sandia.gov/aanc/AANC.htm
http://www.tc.faa.gov/