NEW WAVE OF TECHNOLOGY
Built On The Core Of Mechanical Engineering

PRESENTATION TO:
DoD Maintenance Symposium
October 27, 2008
Denver, CO
by
Prof. Delbert Tesar
Carol Cockrell Curran Chair
Robotics Research Group
The University of Texas at Austin
MILITARY APPLICATIONS

- Ships/Submarines
- Aircrafts/UAV
- Tanks/Off Road Vehicles
- Anti-Terrorism Robots
- Trucks (Hybrid)
1. RECOMMENDATIONS TO PRESIDENT-ELECT
 • Global Trends 2025
 - Aging Workforce
 - Climate Changes
 - Water Shortages
 • American Dominance Eroding
 - Political
 - Economic
 - Cultural
 - Exception Is Military
 • Aging Populations (1 to 3)
 - Europe
 - Japan
 - China
 • Increasing Life Spans
 - Biogerontotechnology
 - Higher Health Care Cost

2. POTENTIAL DISRUPTIVE TECHNOLOGIES
 • Energy Storage Systems
 - Fuel Cells
 - Ultra-capacitors
 - Replace Fossil Fuels
 • Crop Based Bio-fuels
 - Reduce Gasoline Dependence
 • Clean Coal Technology
 - Reduce Pollutants
 - Improve Power Generating Efficiency
 • ROBOT TECHNOLOGY
 - Reduce Humans In Industry
 - Military Applications
 - Health Care
 • Internet to be Pervasive
 - Streamline Supply Chain
 - Science Has No Boundaries
Defense Science Board Recommendation

1. RELEVANT RECOMMENDATIONS
 • Invest In Energy Efficient Tech.
 – Alternative Energy
 – Disruptive Technologies
 • Accelerate Development
 – Prime Mover Platforms
 – Potential to Impact Con Ops

2. DISRUPTIVE TECHNOLOGIES
 • Blended Wing Body Aircraft
 • Variable Speed
 (Tilt Rotary/Vertical Lift)
 • ADVANCED ELECTRO-MECH. ACTUATORS
 • Blast-Bucket Tactical Vehicle
 • Advanced Micro-Generators
 • Etc.

3. BRIEFING BY D. TESAR (May 2006)
 • EMA's Are Universal
 – All DoD Systems
 – Replace Hydraulics
 – Improve Efficiency (75%)
 – Reduce Weight (50%)
 • Major Technology Push Feasible
 – Performance Maps/Envelopes
 – Full EMA Architecture
 – Fault Tolerance
 – No Single Point Failures
 – Condition-Based Maintenance
 – High Torque Density
 – High Acceleration Response
 – Standardized Interfaces
 – In-depth Certification
Figure 1: EOD Components and Systems
<table>
<thead>
<tr>
<th>DOF</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Tesar 3 DOF Wrist (Spherical Linkage)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>One DOF Elbow (Antagonism)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Three DOF Shoulder (Spherical Linkage)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Industrial Wrist (Bevel Gears)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Two DOF Knuckle (Antagonism)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Six DOF Micromanipulator (Stewart Platform)</td>
<td></td>
</tr>
</tbody>
</table>

Early Actuator Development (Tesar ~1975-85)

Master Overview Sept. 23, 2008
1995 State of the Art Actuator Comparison

UT BASELINE PROTOTYPE

MODULAR 6 DOF MANIPULATOR

- Quick-Change Interfaces
- Commercial Buses
- Embedded Controller
- Integrated Joint Bearing
GEAR TRAIN COMPARISON
(Based on 6000 HR. Life)

NABTESCO
- Used in 50% of Industrial Robots
- ≈ 90,000-hour Life

UTEXAS
- Dual PE Gear Train
- 4 Orders Better

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>COMMENT</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque Capacity</td>
<td>Rugged Crankshaft Bearings</td>
<td>4.5X</td>
</tr>
<tr>
<td>Endurance</td>
<td>Contact Stresses In PE Are 3X Less</td>
<td>3X</td>
</tr>
<tr>
<td>Output Stiffness</td>
<td>Internal Deformations and Length of Force Path in PE Are 2.5X Less</td>
<td>2.5X</td>
</tr>
<tr>
<td>Pressure Angle</td>
<td>In PE $\gamma = 7^\circ$, While in the Nabantesco $\gamma > 30^\circ$</td>
<td>5X</td>
</tr>
<tr>
<td>Mesh Friction</td>
<td>PE Sliding Velocities Are 3X Less Than For Nebtesco</td>
<td>3X</td>
</tr>
<tr>
<td>Lost Motion</td>
<td>PE Tooth Load Distribution is Central While Nabtesco is Not</td>
<td>4X</td>
</tr>
<tr>
<td>Balancing Mass</td>
<td>Dual PE is Inherently Balanced</td>
<td>1X</td>
</tr>
</tbody>
</table>
ACTUATOR STANDARDIZATION

1. Commonality to Reduce Cost
2. Minimum Set of Standard Sizes
3. Recommend Finite Number of Standard Sizes
 — Depends on application domain
4. Finite Number of Grades
5. Plug-and-Play
 — Throw Away
6. Enables Large Production Runs
7. Reduces Time To Market
8. Allows Rapid Tech Mods
9. Constant Improvement Of The Performance/Cost Ratio
10. Increasing Quality at Lower Cost
11. Rapid Diffusion/Multiple Suppliers
12. Certification of Performance
13. Perhaps 10% Must Be Super Quiet
 — Materials, high-end bearings, quality contact surfaces
14. Standard For Investment
 — Mechanical equivalent of Moore's law

Master Overview Sept. 23, 2008
ACTUATOR DEVELOPMENT AT UT AUSTIN

1. FIRST PROTOTYPE RESULTS (1988)
 - Dual/Symmetric System
 - Frameless Configuration
 - Total Benefit Was 200x over SOA

2. PROJECTED BENEFITS FOR 1990 DECADE
 - Weight 3 to 10x
 - Compactness 3 to 5x
 - Stiffness 3 to 10x
 - Interfaces 2 to 4x
 - No. of Bearings 3x
 - Redundancy 2x

3. PROJECTED BENEFITS FOR 2000 DECADE
 - Performance 3 to 10x
 - Weight 3 to 5x
 - Stiffness 3x
 - Fault Tolerance 4x
 - Intelligence 10x
 - Standard Interface 4x

4. TWO DECADE ACHIEVEMENT
 Eight Orders of Magnitude (10^8)
 Similar to Moore's Law
CANDIDATE ARMY VEHICLES FOR ACTIVE SUSPENSIONS

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Quantity</th>
<th>Suspension Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMVEE</td>
<td>4</td>
<td>- Independent Suspensions
- Short “Parallel” Arms
- Backfitted With Heavy Armor</td>
</tr>
<tr>
<td>STRYKER</td>
<td>8</td>
<td>- Front Wheels Articulated
- Independent Front Suspension
- Rugged, Rigid Rear Axle</td>
</tr>
<tr>
<td>BRADLEY</td>
<td>12</td>
<td>- 12 Wheels in Road Contact
- Short Arm Suspension
- Torsion Bar Spring (?)</td>
</tr>
<tr>
<td>M1 ABRAMS</td>
<td>14</td>
<td>- 14 Wheels in Road Contact
- Long Arm Suspension
- Torsion Bar Springs (?)</td>
</tr>
</tbody>
</table>
FOUR CLASSES OF ROTARY EMA'S FOR BATTLEFIELD SYSTEMS
(Robots, JLTV, HEMTT, Heavy Transport, Vertical Lift)
Common Features: Low Cost, Full Certification, Minimal Set

1. LOW COMPLEXITY EMA
 • Mass Produced
 • 3 Levels of Ruggedness
 − Light, Medium, Heavy
 • Exceptional Simplicity
 − Standard Components
 − Pancake/Coffee Can
 − SRM or D.C. Motor

2. MULTI-SPEED DRIVE WHEEL
 • Two Electrical Speeds
 • Two Mechanical Speeds
 − Maximize Efficiency
 • Four Operating Regimes
 − High Traction
 − Off-Road Maneuverability
 − Medium Road Speeds
 − High Road Speeds

3. ACTIVE SUSPENSION EMA
 • High Acceleration
 − Low Weight/Volume
 − High Torque
 • Permits Off-Road Operation
 − Emergency Maneuvers
 − High Speeds/Efficiency

4. HIGH TORQUE DENSITY
 • Heavy Lift Manipulators
 − Weapons Handling
 − High Payload/Weight Ratio
 • Mobile Platforms
 − Three Scales (24", 60", 120")
 − High Dexterity/Variable Geometry
 • Minimum Set For All Systems
 − 18 Distinct Actuators
Special Purpose Fielded Battlefield Robots

- Bulldozer Robot
- BAE Robot Vehicle
- BomBot
- Assault Robot
- Mine Clearing Robot
- Dragon Runner
- Gladiator Armed Robot
- PackBot (iRobot)
- Mine Clearing Robot
INTELLIGENT ACTUATOR

I. CONTROL PARAMETERS (c_i)

- Current
- Voltage
- PWM Duty Cycle
- PWM Switching Frequency
- Turn-on Angle Advance
- Turn-off Angle Delay
- Load Duty Cycle
- Amplifier Modulation Depth
- Amplifier Dead Time
- Amplifier Sampling Factor

II. REFERENCE PARAMETERS (r_i)

- Torque
- Speed
- Temperature
- Efficiency
- % Rated Load of Prime Mover
- Prime Mover Rotor Position
- Gear Train Tooth Mesh Cycle
- Torsional Load on Gear Train
- Out-of-Plane Moment Load
- Amplifier Output Power
- EMI Frequency
ACTUATOR PERFORMANCE MAPS

I. POWER SUPPLY MAPS
 • Conduction Losses
 • Turn-On Switch Losses
 • Turn-Off Switch Losses
 • Gate Drive Losses (2)
 • Total Harmonic Distortion (2)
 • Temperature
 • EMI
 • Response Time

II. PRIME MOVER MAPS
 • Temperature
 • Torque
 • Flux Density
 • Copper Loss
 • Other Losses
 • Torque (Turn On/Off Angle)
 • Torque Ripple
 • Torque (PWM Duty Cycle)
 • Average Acceleration
 • Acoustic Noise

III. BEARING MAPS
 • Endurance/Life (2)
 • Friction (2)
 • Temperature
 • Noise (2)
 • Radial Stiffness
 • Clearance
 • Permissible Speed

IV. GEAR TRAIN MAPS
 • Bending Stress
 • Contact Stress (2)
 • Gear Box Temperature
 • Flash Temperature
 • Efficiency
 • Permissible Load
 • Stiffness
 • Backlash/Lost Motion
 • Vibration/Noise
AMPLIFIER PERFORMANCE MAPS

<table>
<thead>
<tr>
<th>Dependent Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDUCTION LOSSES (d)</td>
<td>(P_{\text{Cond}} = \frac{1}{2} \left(\frac{I_c}{\sqrt{2}} \right)^2 R_{\text{dson}})</td>
</tr>
<tr>
<td>Reference and/or Control Parameters</td>
<td>CURRENT (c)</td>
</tr>
<tr>
<td>Depends on Current/Temperature</td>
<td>Current=12 A, Temperature=25°C</td>
</tr>
<tr>
<td>Nominal Conditions</td>
<td></td>
</tr>
</tbody>
</table>

- **Principal Losses**
 - Crossover Power Loss
 - Capacitor Discharge Loss
- **Increased Losses**
 - Higher Frequency
 - Higher Voltage
- **Nominal Conditions**
 - Frequency=12kHz
 - Voltage=50 V

Dependent Parameter

- **TURN-ON SWITCHING LOSSES (d)**

\[
P_{\text{Off}} = \frac{1}{2} C_{\text{OSS}} V_{\text{dc}}^2 f_s
\]

- **Principal Losses**
 - Crossover Power Loss
 - Capacitor Discharge Loss
- **Increased Losses**
 - Higher Frequency
 - Higher Voltage
- **Nominal Conditions**
 - Frequency=12kHz
 - Voltage=50 V
BEARING PERFORMANCE MAPS

<table>
<thead>
<tr>
<th>Dependent Parameter</th>
<th>Reference and/or Control Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDURANCE/LIFE (d)</td>
<td>LOAD (r) SPEED (r)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[L_I_b = \left(\frac{C}{P_{b-r}} \right)^n \frac{1}{\omega_b D C_b} \]; \(n = 3 \) for Ball Bearing \(n = 10/3 \) for Roller Bearing

- **Bearing Fatigue Life**
 - Inversely Proportional to Load Ratio and Speed Ratio
- **High Loads**
 - Higher Contact Stress, Reduced Life
- **High Speeds**
 - Reduced Running Time (Same Revolutions)
- **Optimum Loading Region**
 - \(10\% < P/C < 50\% \)

- **Bearing Life**
 - Inversely Proportional to Temperature, Duty Cycle Ratio
- **High Temperatures**
 - Reduced Surface Hardness
- **High Duty Cycle**
 - Reduced Running Time For Fixed Speed

\[C_{\text{reduced}} = f_h C \]

- **C: Bearing Load Capacity at 10^6 cycles**
- **f_h: Hardness Factor, 0 < f_h(T) < 1**

Master Overview Sept. 23, 2008
PERFORMANCE ENVELOPE EXAMPLE NO. 1

Prime Mover

<table>
<thead>
<tr>
<th>Z Axis</th>
<th>X & Y Axes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque(r)</td>
<td>1. Turn On Angle (c)</td>
</tr>
<tr>
<td></td>
<td>2. Turn Off Angle (c)</td>
</tr>
<tr>
<td>Torque Ripple (d)</td>
<td>1. Turn On Angle (c)</td>
</tr>
<tr>
<td></td>
<td>2. Turn Off Angle (c)</td>
</tr>
<tr>
<td>Drive Efficiency (d)</td>
<td>1. Turn On Angle (c)</td>
</tr>
<tr>
<td></td>
<td>2. Turn Off Angle (c)</td>
</tr>
</tbody>
</table>
Only 12% of the total operational region run on Efficiency above 70% and Noise less than 70 dB.
OVERVIEW OF ACTUATOR CONDITION-BASED MAINTENANCE

1. FRAMEWORK
 • Identify Faults During Operation
 • Continuous Assessment of System Condition
 • Provide Lead Time For Required Maintenance
 • Provide Timely Repair or Replacement
 − By Nominally Trained Technician

2. REQUIREMENTS
 • Spectrum of Sensor Readings
 • Reliable Fault Estimation Algorithms
 • Identification of Fault Origins
 • Continuous Assessment of System Condition
 • Forecast Expected Conditions
 • Record All Vital Parameters

3. DESIRED OUTPUTS
 • Assess Present and Future System Condition
 • Alert Operator of Detected Fault
 • Identify Suspected Component
 • Suggest Corrective Action

4. BENEFITS OF CBM
 • Reduces Maintenance Costs
 • Increases Equipment Reliability
 • Improves Equipment Availability
 • Extends Equipment Service Life
 • Provides Continuous System Awareness
 • Increases Operational Safety
 • Reduces Severity of Failures
 • Reduces Surprise Failures
 • Extends Maintenance Cycles
 • Reduces Technician Training Requirement
 • Reduces False Alarms
Performance Envelopes

Nominal Performance Condition

Assessed Performance Condition

Required Performance Condition

85% Torque
85% Speed
80% Efficiency