F-15 MECHANICAL EQUIPMENT AND SUBSYSTEMS INTEGRITY PROGRAM (MECSIP)

The Best Fighter, Anytime, Anywhere

F-15 MECSIP Reliability Center Maintenance Program

Mr. Hugh Darsey
F-15 Mechanical Engineer
830 ACSSS/GFEA
DSN 468-6207
E-mail: Hugh.Darsey@robins.af.mil
F-15 Approach

The Best Fighter, Anytime, Anywhere

• MECSIP plan
• Determine what maintenance practices will optimize system reliability
• RCM determined to be best tool
• RCM drives other analytical tools when the reliability issues are identified during the analysis (e.g. process, quality, efficiency, or safety related)
• Detailed data analysis

Reliability-Centered Maintenance, F. Stanley Nowlan, et. al., 1978, p5
Program Purpose and Benefits

The Best Fighter, Anytime, Anywhere

- Purpose
 - Utilize Reliability Centered Maintenance (RCM) for in-service aircraft and systems analysis
 - Improve overall aircraft/system reliability
 - Identify deficiencies in design, maintenance practices, training, support equipment and/or other logistics issues
 - Implement most cost effective function preservation strategy without safety or environmental consequences
 - Review/rewrite of Schedule Maintenance Inspection T.O. based on analysis results
 - Justify and document decisions/recommendations to provide an audit trail
 - Identify significant return on investment opportunities
System Priority
“Weighting Factors”

The Best Fighter, Anytime, Anywhere

<table>
<thead>
<tr>
<th>F15A-D by WUC</th>
<th>Weighted Score</th>
<th>Schedule Man Hrs</th>
<th>Unscheduled Man Hrs</th>
<th>Aborts</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>4</td>
<td>45</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>23</td>
<td>14</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>11</td>
<td>46</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>76</td>
<td>46</td>
<td>42</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>24</td>
<td>13</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13</td>
<td>41</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>74</td>
<td>12</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>14</td>
<td>49</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>76</td>
<td>44</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>41</td>
<td>47</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F15E by WUC</th>
<th>Weighted Score</th>
<th>Schedule Man Hrs</th>
<th>Unscheduled Man Hrs</th>
<th>Aborts</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>23</td>
<td>23</td>
<td>45</td>
<td>45</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>4</td>
<td>41</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>46</td>
<td>46</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>74</td>
<td>42</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>11</td>
<td>14</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>75</td>
<td>13</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>14</td>
<td>49</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>13</td>
<td>44</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>12</td>
<td>47</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>76</td>
<td>12</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>
F-15A-E Combined System Priority

The Best Fighter, Anytime, Anywhere

Advancing the Legacy

A-E Combined System Priority

Score

WUC
F-15 FSIP/MECSIP Status

The Best Fighter, Anytime, Anywhere

• 17 Systems Complete (Results on Next Slides)
• Four Systems In Work
 – Structures
 • Center Fuselage
 • Ramps
 – Avionics
 – Weapons
In-work Analysis Review

The Best Fighter, Anytime, Anywhere

FSIP RCM Analyses Complete to Date

<table>
<thead>
<tr>
<th>FSIP System</th>
<th>WUC</th>
<th>Status</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Gear</td>
<td>13</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Fuels</td>
<td>46</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>ECS</td>
<td>41</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Aircraft Wiring CBA</td>
<td>All</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Flight Controls</td>
<td>14</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Cockpit/Canopy</td>
<td>12000/97000/91000</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Throttles</td>
<td>“</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Canopy</td>
<td>“</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Escape System</td>
<td>“</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Cockpit Furnishings</td>
<td>“</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>47</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Lighting</td>
<td>44</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>45</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Electrical Power</td>
<td>42</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Miscellaneous Utilities</td>
<td>49</td>
<td>Complete</td>
<td>100%</td>
</tr>
</tbody>
</table>
In-work Analysis Review Cont.

The Best Fighter, Anytime, Anywhere

FSIP RCM In-Work Analyses Status

<table>
<thead>
<tr>
<th>FSIP System</th>
<th>WUC</th>
<th>Status</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>Forward</td>
<td>11</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Center</td>
<td>11</td>
<td>In Work</td>
<td>69%</td>
</tr>
<tr>
<td>Aft</td>
<td>11</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Wings</td>
<td>11</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Secondary Power</td>
<td>24</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Power Plant (-6 only)</td>
<td>23</td>
<td>Complete</td>
<td>100%</td>
</tr>
<tr>
<td>Avionics</td>
<td>Multiple</td>
<td>In Work</td>
<td>38%</td>
</tr>
<tr>
<td>Weapons</td>
<td>75</td>
<td>In Work</td>
<td>49%</td>
</tr>
</tbody>
</table>
F-15 Analysis Benefits

The Best Fighter, Anytime, Anywhere

• At Completion of all Systems
 – 40% Reduction in Phase Maintenance
 – 5 - 8% Increase in Aircraft Availability
 – 10% Reduction in Un-Scheduled Maintenance
 – ~$70M+ Plus in Cost Avoidance & Savings
 – ~50K+ in Man Hour Savings
 – Increase In Component and System Reliability
Objective:
• Apply Reliability Centered Maintenance Analysis to F-15A/B/C/D/E 200 and 400 Hour Phase Inspections

Goals:
• Shift 200 HR HPO requirements into 400 HR HPO
• Eliminate 3 Phase Inspections in a 1200 Periodic Cycle
• Expected increase in aircraft availability by ~15 aircraft

Measures of Success:
• RCM Analysis Performed
• Improved Single Aircraft Availability Rate 21 days in a PE Cycle
• Implementation Goals
 • F-15E Complete
 • F-15A-D Implementation Fall 2008

Tentative Schedule

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCM Analysis Performed</td>
<td>30 July 2007</td>
</tr>
<tr>
<td>830 ACSG Review</td>
<td>3 Aug 2007</td>
</tr>
<tr>
<td>830 ACSG/CC Approval</td>
<td>7 Sep 2007</td>
</tr>
<tr>
<td>Interim TO Publication</td>
<td>1 Jan 2008</td>
</tr>
<tr>
<td>Implemented F-15E</td>
<td>29 Feb 2008</td>
</tr>
</tbody>
</table>
VRCM - A Better Way

Traditional Maintenance

Focuses on preserving the operation of the component

Considers only scheduled maintenance on component or fix-when-failed

Scheduled maintenance, if any, based on manufacturers' or vendors' recommendation

More corrective maintenance

Very reactive approach

VRCM

Focuses on preserving the function of the system

Considers many options

Fix-when-failed only when cost effective

Scheduled maintenance based on the failure characteristics of the component in its operating context

Less corrective maintenance

Proactive approach
Additional Tasks

• Component Analysis
 – RSA
 • Return Rate Tables to the field
 • Return on Investment is 5 months
 • ~23M savings in first five years after implementation
 – Stab Act reliability decreasing
 • WR-ALC, OC-ALC & Parker working 16 action items to increase reliability
 – Review of piston and dynamic sleeve seals
 – Evaluate LVDT failures
 – Evaluate pilot valve contamination causes
 – Evaluate solenoid valve failures
Additional Tasks

The Best Fighter, Anytime, Anywhere

• Nose to Tail Tune-up for Manual Flight Control System
 – Identified need for standardized procedure
 • Procedure developed and tested
 • Several T.O. deficiencies noted
 – Incorporate into FY 08 PDM on A-D and selected E models

• Standardize Flight Control Impoundment Procedures
 – FY03 Commanders’ Conference action item
 • Procedure developed with field input
 – Implementation in work
 • Technical procedures in F-15 tech order
 • Maintenance management procedures to be in new 21-101 supplement
Additional Tasks

The Best Fighter, Anytime, Anywhere

• Combine Three Thru-Flight job guides into One
 – PACAF and HQ ACC requested task
 – Draft procedure developed and distributed to MAJCOMS and ANG for review
 – Meeting with ACC A8 and OC/ALC engineering on 22 Aug 06
 – Combine Thru-Flight Job Guide Implemented in 2007

• F15 Hydraulic Fluid Contamination
 – Contamination prevalent in Aircraft and Ground Support Equipment
 – Private sector research indicates 70 - 80% of component failures attributed to contamination.
 – Contamination clean-up will increase component Mean Time Between Failures (MTBF)
 – Purification of Hydraulic System test in-work;
 • Procurement of 50 Purifiers, AF to take delivery in late Summer 2008
 – Qualify new hydraulic filters (5 micron). Qualification testing completed, flight testing in-progress
 • Procurement of New Filters, AF to take delivery in early 2009
Other Actions

The Best Fighter, Anytime, Anywhere

- Hydraulic System
 - Engineering investigation/re-evaluation of damage limits on hydraulic tubing and hydraulic system leak limits
 - PCI & PCII Establish Go-no-go wear limits for the hydraulic pump external shaft
- Electrical Power System
 - Engineering investigation for:
 - Overhaul processes for the IDG, CSD and GCU
 - Possible re-design of the CSD Input Shaft Carbon Seal.
 - Improvement of the F-15A-D CSD to the F-15E CSD solder ring carriage to eliminate need to change FOHE.
 - GCU -- Investigate sources of moisture associated malfunctions.
- Flap-up stop
 - Engineering Investigation into the construction and installation procedures for the flap-up stop and the flap bathtub fitting
- Secondary Power
 - Research new Secondary Power System Test Set and CBA/ROI analysis
- PRCA
 - F-15A-D and F-15E PRCA Tester Redesign
Results

The Best Fighter, Anytime, Anywhere

- Preventative Maintenance program that optimizes the reliability and availability of the aircraft.
- Appropriate maintenance intervals that match failure modes.
- Identifies other actions to improve reliability and maintainability.
- At Completion of Analysis Transition into Sustainment Phase.
 - On-going analysis (living program)
Summary

The Best Fighter, Anytime, Anywhere

• Application of RCM methodology for F-15’s lifecycle is a must
• Reliability Improvements increase A/C Availability
• On-going analysis (living program)
• Increase in Component and System Reliability
• Upon Completion of F-15 RCM Expected Results
 – 40% Reduction in Phase Maintenance
 – 5-8% Increase in Aircraft Availability
 – 10% Reduction in Unscheduled maintenance
 – ~$70M+ cost avoidance & savings
 – ~50K+ Man hour savings
Questions