Instructed by: Profs. Don Wilson, Frank Lu and Luca Maddalena, University of Texas at Arlington; Mr. Paul Hagseth and Dr. Dennis Finley, Lockheed Martin Aeronautics; Dr. Kevin Bowcutt, Boeing Research & Technology
Hypersonic flight has once again risen to prominence as a topic of high national interest. Current US and international programs range from hypersonic cruise vehicles (HCV) and transatmospheric vehicles (TAV), to maneuverable hypersonic glide vehicles (HGV) and hypersonic interceptors. The design and performance analysis of these vehicles is challenging because of the wide range of flight conditions encountered, and the critical importance of maintaining acceptable fuel mass fractions. These constraints impose severe challenges to designers, requiring innovative component designs and careful integration of the various components to achieve an efficient flight vehicle.
This 20-hour on-demand course recording covers airbreathing hypersonic flight vehicles, emphasizing propulsion systems that range from ramjets, scramjets, dual-mode scramjets, turbine-based and rocket-based combined cycles to pre-cooled engine cycles. Topics will include an introduction to hypersonic flight from a historical perspective, HCV and TAV performance requirements, design methodology, aerodynamics, propulsion, structures, flight mechanics/stability & control, thermal management, design convergence, off-design performance analysis, the role of CFD, ground & flight testing, and conclude with a review of ongoing international programs.
Instructors: Rodger Dyson, Bob Bayles, Kiruba Haran, Pat Wheeler, Zheyu Zhang, Ajay Misra, Chuck Lents, Jonathan Gladin
- A joint 18-hour course with the IEEE Transportation Electrification Community, bringing together the premier experts from both AIAA and IEEE, available now on-demand.
- All students will receive an AIAA Certificate of Completion at the end of the course
This joint AIAA/IEEE 18-hour online course describes the benefits of electrifying the propulsion systems of large aircraft, identifies the technology advancements required to enable electrified aircraft propulsion, and details how the aerospace industry can transition from the current state of the art to these advanced technologies. It covers electrical machines, power systems and electronics, materials research, superconductivity and cryogenics, thermal management, battery chemistry, system design, and optimization. The course covers general concepts, tools, and information, and offers the learner a solid fundamental understanding of the material.