Contents

Foreword xi
Preface to the Fourth Edition xv

CHAPTER 1 Transmission Cases and Parking Mechanisms 1-1

1.1 Transmission Cases
C. E. Shellman with updates by Ernest DeVincent 1-1

1.2 Parking Mechanisms
A. Gupta 1-10

CHAPTER 2 Torque Converters and Start Devices 2-1

2.1 Fluid Couplings
J. W. Qualman and E. L. Egbert 2-1

2.2 Multiturbine Torque Converters
F. H. Walker 2-17

2.3 Application of Hydrodynamic Drive Units to Passenger Car Automatic Transmissions
E. W. Upton 2-31

2.4 Design of Single-Stage, Three-Element Torque Converter
V. J. Jandasek 2-49

2.5 Technology Needs for the Automotive Torque Converter—Part 1; Internal Flow, Blade Design, and Performance
Robert R. By and John E. Mahoney with updates by Thomas G. Brand 2-70

2.6 An Experimental Analysis of Fluid Flow in a Torque Converter
Akio Numazawa, Fumihiro Ushijima, Kagenori Fukumura, and Tomo-o-Ishihara 2-85

2.7 A Loss Analysis Design Approach to Improving Torque Converter Performance
Masaaki Kubo and Eiji Ejiri 2-93

2.8 The Chrysler Torque Converter Lock-Up Clutch
A. P. Bloomquist and S. A. Mikel with updates by Thomas G. Brand 2-103

2.9 Control Technology of Minimal Slip-Type Torque Converter Clutch
Takeo Hiramatsu, Takao Akagi, and Haruaki Yoneda 2-117
2.10 Dynamic Behavior of a Torque Converter with Centrifugal Bypass Clutch 2-125
M. C. Tsangarides and W. E. Tobler

CHAPTER 3 Gears, Splines, and Chains 3-1

3.1 Design of Planetary Gear Trains 3-2
O. K. Kelley, with updates by E. L. Jones and M. T. Berhan

3.2 Transmission Gear Design for Strength and Surface Durability 3-8
E. L. Jones, with updates by E. L. Jones, M. T. Berhan, H. Dourra, and M. B. Leising

3.3 Manufacturing Considerations Affecting Transmission Gear Design 3-17
A. Hardy, with updates by R. J. Garrett

3.4 Gear Design for Noise Reduction 3-25
W. D. Route, with updates by E. L. Jones, D. K. Ducklow, and M. T. Berhan

3.5 The Lever Analogy 3-40
H. L. Benford and M. B. Leising, with updates by M. B. Leising, H. Dourra, and M. T. Berhan

3.6 Design Practice for Automotive Driveline Splines and Serrations 3-50
W. B. McCordell, J. Mahoney, and D. Cameron, with updates by D. Cameron, E. L. Jones, and C. E. Dieterle

3.7 The Effective Fit Concept of Involute Splines and Inspection 3-68
L. DeVos, with updates by C. E. Dieterle and M. T. Berhan

3.8 Chain Drives in the Vehicle Powertrain 3-75
R. H. Mead, T. O. Morrow, and R. G. Young, Jr., with updates by M. Giovannini, R. G. Young, Jr., and M. T. Berhan

3.9 The Gemini Phased Chain System: A New Tool in Automotive Power Transmission 3-86
P. Mott and B. Martin

CHAPTER 4 Transmission Shaft Fatigue Design 4-1
Jeffrey K. Baran and Keith D. VanMaanen

4.1 Abstract 4-1

4.2 Introduction 4-1

4.3 Nomenclature 4-2

4.4 Stress Calculation 4-2

4.5 Mass Relationship 4-3

4.6 Stress Concentration 4-3

4.7 Fatigue Properties (S-N Curve) 4-4

4.8 S-N Modifying Factors 4-5
Chapter 5 Bearings

5.1 Design of Sleeve Bearings and Plain Thrust Washers
L. J. Pesek and W. E. Smith

5.2 Improving the Performance of Sleeve Bushings and Thrust Washers
Brad L. Blaine and Christopher D. Wiegandt

5.3 The Use of Polymeric Thrust Elements in Powertrain Applications
R. G. Van Ryper

5.4 Rolling Element Bearings in Light Vehicle Automatic Transmissions
J. R. Hull, with updates by M. D. Myers

5.5 Design and Selection Factors for Automatic Transaxle Tapered Roller Bearings
B. Martin and H. E. Hill

Chapter 6 Friction Clutches

Robert C. Lam, Donn K. Fairbank, Keith Martin, Anthony J. Grzesiak, and Ted D. Snyder

6.1 Evolution of High-Energy Wet Friction Materials
6.2 Multi-Plate Friction Clutch
6.3 Bands
6.4 References

Chapter 7 One-Way Clutches
Updated by John M. Kremer

7.1 Roller One-Way Clutches
7.2 Sprag One-Way Clutches
7.3 Pawl One-Way Clutches
Contents

Chapter 8 Automatic Transmission Controls
8-1

8.1 Introduction
Maurie Leising
8-2

8.2 Basic Shift Processes—The “How of Shifting”
M. Leising, Hussein Dourra, and Gang Chen
8-2

8.3 Shift Torque Analysis and the Continuously Variable Transmission
John E. Mahoney, Joel M. Maguire, and Shushan Bai
8-21

8.4 Shift Scheduling
Gang Chen and M. Leising
8-26

8.5 Transmission Control and Types of Controls
Ronald Cowan, Charles Marshall, and M. Leising
8-40

8.6 Transmission Operational Features
Ronald Cowan, Charles Marshall, and M. Leising
8-44

8.7 Automatically Shifted Manual Transmissions
M. Leising, G. Chen, and H. Dourra
8-47

8.8 Control Components
John Titlow and Joseph Gierut
8-65

8.9 Development Technology
Hussein Dourra and Ronald Cowan
8-112

Chapter 9 Automatic Transmission Pump Design
9-1

9.1 Introduction
T. Roeber, M. Goulet, P. Dion, and Glenn B. Mann
9-2

9.2 Types of Pumps
9-2

9.3 Types of Pumping Systems
9-2

9.4 Pump Design Guidelines
9-2

9.5 Survey of Transmission Pumps Currently in Use
9-11

9.6 What is Coming?
9-12

9.7 References
9-12

Chapter 10 Seals and Gaskets
10-1

10.1 An Overview of Automatic Transmission Gaskets
Andrew F. Joseph, Jeff Nelson, and Lane Noble
10-2

10.2 An Overview of Transmission Radial Shaft Seals
Susan M. Bothe and Jeff Dieterle
10-13
CHAPTER 11 Transmission Temperature Control and Lubrication 11-1

11.1 Introduction 11-1
Maurie Leising and Charles Redinger

11.2 Transmission Cooling Systems: Oil-to-Water Type 11-2
E. F. Farrell and T. M. Wang

11.3 Transmission Cooling Systems: Air Cooling 11-10
M. G. Gabriel

11.4 Temperature Effects on Transmission Operation 11-20
T. J. Griffen

11.5 Temperature Control and Fuel Consumption 11-27
M. Leising and C. Redinger

11.6 Design and Validation of Automatic Transmission Lubrication Circuits 11-30
James T. Gooden

CHAPTER 12 ATF and Driveline Fluids 12-1
Craig Tipton, Tze-Chi Jao, and Timothy Newcomb

12.1 Introduction 12-2

12.2 History of ATF Development 12-3

12.3 Key Physical Properties 12-5

12.4 Basestocks and Their Impact on Performance 12-8

12.5 Chemical Composition 12-10

12.6 Driveline Fluid Specifications 12-12

12.7 Evaluating the Condition of Used Driveline Oils 12-18

12.8 Future Directions 12-23

12.9 Acknowledgments 12-23

12.10 Glossary of Terms 12-23

12.11 Key References 12-25

CHAPTER 13 Metal Belt Drive Continuously Variable Ratio (CVT) Automatic Transmissions 13-1
Bruce Anderson

13.1 Introduction 13-1

13.2 Definitions 13-1

13.3 Application Considerations 13-2

13.4 Belt Design 13-5
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>Sheave Design</td>
<td>13-9</td>
</tr>
<tr>
<td>13.6</td>
<td>Variator System Considerations</td>
<td>13-11</td>
</tr>
<tr>
<td>13.7</td>
<td>Controls Design</td>
<td>13-18</td>
</tr>
<tr>
<td>13.8</td>
<td>Fluid</td>
<td>13-20</td>
</tr>
<tr>
<td>13.9</td>
<td>References</td>
<td>13-22</td>
</tr>
<tr>
<td>13.10</td>
<td>Applicable Publications</td>
<td>13-25</td>
</tr>
<tr>
<td>13.11</td>
<td>Appendix A—CVT Cross Sections</td>
<td>13-26</td>
</tr>
<tr>
<td>13.12</td>
<td>Appendix B—Transmission Oil Tests</td>
<td>13-27</td>
</tr>
</tbody>
</table>

Chapter 14
Automatic Transmission and Transaxle Filter Design
Larry Larkin, Andy Boast, Ibrahim Khalil, and Dan Haggard

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>14-2</td>
</tr>
<tr>
<td>14.2</td>
<td>History</td>
<td>14-2</td>
</tr>
<tr>
<td>14.3</td>
<td>Transmission Filter Functions and Requirements</td>
<td>14-2</td>
</tr>
<tr>
<td>14.4</td>
<td>Filter Construction</td>
<td>14-5</td>
</tr>
<tr>
<td>14.5</td>
<td>Other Design Features That Can Be Built into the Transmission Sump Filter</td>
<td>14-10</td>
</tr>
<tr>
<td>14.6</td>
<td>Pressure-Side Filters</td>
<td>14-11</td>
</tr>
<tr>
<td>14.7</td>
<td>Transmission Sump Filter Testing</td>
<td>14-13</td>
</tr>
<tr>
<td>14.8</td>
<td>References</td>
<td>14-17</td>
</tr>
</tbody>
</table>

Index
I-1