Semi-Active Suspension Control Design for Vehicles

Contents:

- List of Figures ... xi
- List of Tables ... xix
- About the Authors .. xxi
- Preface ... xxiii
- Acknowledgements ... xxvii
- Notations ... xxix

Chapter 1 Introduction and Motivations ... 1
 1.1 Introduction and Historical Perspective ... 1
 1.2 Semi-Active Suspensions .. 4
 1.3 Applications and Technologies of Semi-Active Suspensions 8
 1.4 Book Structure and Contributions ... 11
 1.5 Model Parameter Sets ... 13

Chapter 2 Semi-Active Suspension Technologies and Models 15
 2.1 Introduction to Suspension Modeling ... 15
 2.2 Passive Suspension Systems .. 17
 2.2.1 Coil Spring ... 17
 2.2.2 Gas Spring ... 18
 2.2.3 Ideal Damping Element in a Passive Suspension System 21
 2.3 Controllable Suspension Systems: a Classification 23
 2.4 Semi-Active Suspension Technologies ... 26
 2.4.1 Electrohydraulic Dampers (EH Dampers) 27
 2.4.2 Magnetorheological Dampers (MR Dampers) 27
 2.4.3 Electrorheological Dampers (ER Dampers) 29
 2.4.4 On “linearization” of Damping Characteristics 32
 2.5 Dynamical Models for Semi-Active Shock Absorber 32
 2.5.1 Classical Model for Semi-Active Shock Absorber 33
 2.5.2 Control Oriented Dynamical Model 34
 2.5.3 Simplified First-Order Model for Semi-Active Shock Absorber 38
 2.6 Conclusions .. 39
Semi-Active Suspension Control Design for Vehicles

Chapter 3 Suspension Oriented Vehicle Models

3.1 Passive Vertical Quarter-Car Model ... 4
 3.1.1 Nonlinear Passive Model .. 4
 3.1.2 Equilibrium Points .. 4
 3.1.3 LTI Passive Models .. 4
 3.1.4 Quarter-Car Model Invariance Properties 4
 3.1.5 Numerical Discussion and Analysis 4
 3.1.6 Remarks on the Simplified Quarter-Car Model 5
3.2 Passive Vertical Half-Vehicle Models .. 5
 3.2.1 Pitch Oriented Model ... 5
 3.2.2 Numerical Discussion and Analysis 5
3.3 Passive Vertical Full Vehicle Model .. 6
 3.3.1 Assumptions and Kinematic Equations 6
 3.3.2 Full Vertical Dynamic Equations .. 6
3.4 Passive Extended Half-Vehicle Model .. 6
 3.4.1 Nonlinear Model .. 6
3.5 Semi-Active Vertical Quarter-Car Model 6
 3.5.1 Nonlinear and LTI Models .. 6
 3.5.2 Toward LPV Models .. 6
3.6 Conclusions ... 6

Chapter 4 Methodology of Analysis for Automotive Suspensions

4.1 Human Body Comfort and Handling Specifications 7
 4.1.1 Comfort Specifications ... 7
 4.1.2 Road-Holding Specifications .. 7
 4.1.3 Suspension Technological Limitations: End-Stop 7
 4.1.4 Quarter-Car Performance Specifications and Signals of Interest 7
4.2 Frequency Domain Performance Evaluations 7
 4.2.1 Nonlinear Frequency Response Computation 7
 4.2.2 Performance Index Computation .. 7
 4.2.3 Numerical Discussion and Analysis 8
4.3 Other Time Domain Performance Evaluations 8
 4.3.1 Bump Test .. 8
 4.3.2 Broad Band White Noise Test .. 8
4.4 Conclusions ... 8

Chapter 5 Optimal Strategy for Semi-Active Suspensions and Benchmark

5.1 General Rationale of the Solution ... 9
 5.1.1 Objective and Assumptions ... 9
 5.1.2 Optimization: General Idea ... 9
5.2 Cost Function Definitions ... 9
5.3 Optimization Problem Constraint Definitions 9
Chapter 6 Classical Control for Semi-Active Suspension System 107
 6.1 Comfort Oriented Semi-Active Control Approaches 107
 6.1.1 Skyhook Control .. 107
 6.1.2 Acceleration Driven Damper Control (ADD) 110
 6.1.3 Power Driven Damper Control (PDD) 110
 6.2 Road-Holding Oriented Semi-Active Control Approaches 111
 6.2.1 Groundhook Damper Control (GH 2-States) 111
 6.2.2 Groundhook Damper Control (GH Linear) 113
 6.3 Performance Evaluation and Comparison 113
 6.3.1 Comfort Oriented Strategies 113
 6.3.2 Road-Holding Oriented Strategies 114
 6.3.3 About the Trade-Off Comfort Versus Road-Holding 114
 6.4 Modern Semi-Active Control Approaches 117
 6.4.1 \mathcal{H}_∞ Clipped Control Approach 117
 6.4.2 Predictive Approaches ... 118
 6.4.3 Some Other Approaches .. 119
 6.5 Conclusions .. 120

Chapter 7 Mixed SH-ADD Semi-Active Control 121
 7.1 Mixed Skyhook-ADD: The Algorithm 121
 7.2 The 1-Sensor-Mix Algorithm .. 122
 7.3 The Frequency-Range Selector .. 128
 7.3.1 First Interpretation: Single-Tone Disturbance 128
 7.3.2 Second Interpretation: Broadband Disturbance 130
 7.3.3 Sensitivity of Mixed Strategies with Respect to α 131
 7.4 Numerical Time-Domain Simulations 132
 7.4.1 Pure Tone Signal ... 132
 7.4.2 Bump Test ... 135
 7.5 Conclusions .. 138

Chapter 8 Robust \mathcal{H}_∞ “LPV Semi-Active” Control 139
 8.1 Synthesis Model .. 139
8.1.1 System Model Σ_c .. 140
8.1.2 Actuator Model .. 140
8.2 “LPV Semi-Active” Proposed Approach and Scheduling Strategy 141
8.2.1 Basic Definition on LPV Polytopic Systems 142
8.2.2 Generalized LPV Plant $\Sigma_g(\rho)$ and Problem Definition 143
8.2.3 Scheduling Strategy for the Parameter ρ 145
8.3 H_∞ LMI Based “LPV Semi-Active” Controller Synthesis 146
8.3.1 Problem Feasibility and Controller Reconstruction 147
8.3.2 Numerical Issues and “LPV Semi-Active” Synthesis Algorithm 148
8.4 Controller Implementation and On-Line Scheduling 150
8.5 Controller Parametrization .. 151
8.5.1 Comfort Oriented Controller Parametrization (Controller 1) 152
8.5.2 Road-Holding Oriented Controller Parametrization (Controller 2) 154
8.6 Numerical Discussion and Analysis.. 156
8.6.1 Nonlinear Frequency Response .. 158
8.6.2 Performance Index .. 160
8.6.3 Bump Test .. 160
8.7 Conclusions ... 163

Chapter 9 Conclusions and Outlook .. 167

Appendix A Control Method Comparisons .. 169
A.1 Method Complexity Comparison .. 169
A.1.1 Skyhook 2-States and Skyhook Linear ... 170
A.1.2 ADD and PDD ... 171
A.1.3 Groundhook 2-States and Groundhook Linear 172
A.1.4 SH-ADD (and 1 Sensor Version) ... 172
A.1.5 LPV Semi-Active .. 173
A.1.6 (Hybrid) MPC Based ... 174
A.2 Conclusions .. 175

Appendix B Case Study ... 177
B.1 Description of the Actuator ... 177
B.2 Model of the Semi-Active Suspension System 179
B.3 Control Algorithms ... 180
B.4 Experimental Set-Up .. 181
B.5 Definition of the Test-Bench Experiments .. 184
B.6 Analysis of the Experimental Results ... 185

References ... 193

Index ... 203
List of Figures

1.1 Classical scheme of a wheel-to-chassis suspension in a car. 1
1.2 Filtering effect of a passive suspension: example of a road-to-chassis frequency response (up), and a road-to-tire-deflection frequency response (bottom). ... 3
1.3 The Citroën DS. .. 4
1.4 The Lotus Excel. ... 4
1.5 Example of a suspension of a luxury sedan (Audi A8), which integrates an electronically controlled gas spring with load-leveling capabilities, and a semi-active damper. ... 5
1.6 Damping-ratio trade-off. ... 6
1.7 An experimental comparison of filtering performance (comfort objective): semi-active strategies; labeled SH-C (for Skyhook), Mix-1 (for Mixed Skyhook-ADD with 1 sensor) and Mix-2 (for Mixed Skyhook-ADD with 2 sensors) versus fixed-damping configurations (c_{min} and c_{max}). ... 7
1.8 Examples of chassis-to-cabin (by Same Deutz-Fahr) and cabin-to-seat (by SEARS) semi-active suspension systems. 8
1.9 Examples of electronically controlled semi-active shock absorbers, using three different technologies. From left to right: solenoid-valve Electrohydraulic damper (Sachs), Magnetorheological damper (Delphi), and Electrorheological damper (Fluidicon). ... 9
1.10 Examples of “full-corner” vehicle architectures: Michelin Active Wheel© (left) and Siemens VDO e-Corner© (right). 10
1.11 Book organization and suggested reader roadmap. Expert readers may start directly with starred (*) chapters. .. 11
2.1 Quarter-car representation of a suspension system in a vehicle. 16
2.2 Pictorial representation of the suspension “passivity constraint” (grey area). Example of linear characteristics for passive spring (bold line, left) and for passive damper (bold line, right). 17
2.3 Example of a steel coil spring. ... 18
Semi-Active Suspension Control Design for Vehicles

2.4 Typical deflection-force characteristic (right) of spring with nominal stiffness coefficient $k = 25$ KN and nominal maximum deflection of 200 mm. Steady state computed for a suspended mass of 250 Kg. 19

2.5 Schematic representation of a gas spring implemented with pneumatic spring (left) and with hydropneumatic spring (right). ... 20

2.6 Typical deflection-force characteristic of an automotive air spring. 21

2.7 Concept of a mono-tube passive shock absorber ... 22

2.8 Diagram of an ideal linear passive characteristic of hydraulic shock absorber, with and without friction. The damping coefficient is $c = 2000$ Ns/m, the static friction is $F_0 = 70$ N. ... 22

2.9 Graphic representation of suspension system classification: energy request with respect to the available control bandwidth ... 25

2.10 Schematic representation of an electrohydraulic shock absorber. 27

2.11 Ideal damping characteristics of an electrohydraulic shock absorber (with negligible friction) ... 28

2.12 Left: schematic representation of a magnetorheological damper behavior: with and without magnetic field ... 29

2.13 Ideal damping characteristics of a magnetorheological shock absorber. 30

2.14 Schematic representation of an electrorheological damper: with and without electric field ... 30

2.15 Ideal damping characteristics of an electrorheological shock absorber 31

2.16 Conceptual block diagram of an electronic shock absorber. 33

2.17 Diagram of the electric driver in a semi-active shock absorber 36

2.18 Step response of the electric driver: open-loop (top line) and closed-loop (bottom line). Parameters of the driver and the controller are: $L = 30$ mH; $R = 5\Omega$; desired closed-loop bandwidth $\omega_c = 100 \cdot 2\pi$ (100 Hz); $K_l = 500 \cdot 2\pi$; $K_p = 3 \cdot 2\pi$... 37

2.19 Block diagram of semi-active shock absorber equipped with internal control of electric subsystem ... 38

2.1 Passive quarter-car model, general form (left) and simplified form (right) 42

2.2 Eigenvalues of the passive quarter-car model for varying damping values. Low damping (rounds), medium damping (triangles) and high damping (dots) ... 50

2.3 Frequency response of $F_z(s)$, $F_{z_{def}}(s)$ and $F_{z_{def}}(s)$ for varying damping value c. Invariant points are represented by the dots ... 51

2.4 Frequency response of $F_z(s)$, $F_{z_{def}}(s)$ and $F_{z_{def}}(s)$ for varying stiffness value k. Invariant points are represented by the dots ... 52

2.5 Simplified passive quarter-car model ... 53
Semi-Active Suspension Control Design for Vehicles

3.6 Frequency response $F_z(s)$: comparison between the quarter-car model (dashed line) and its simplified version (solid line) for $c = c_{\text{min}}$. 55

3.7 Half-car model (pitch oriented). ... 56

3.8 Bode diagram of the pitch at the center of gravity $F_\phi(s)$ (top), the bounce $F_z(s)$ at the center of gravity and of the front bounce $F_{z_f}(s)$ (bottom) of the pitch model for varying damping value c. 58

3.9 Bode diagrams of $F_z(s)$ and $F_{z_f}(s)$ for the half pitch (solid line) model, compared with for the quarter-car model (dashed line), for $c = c_{\text{min}}$. 59

3.10 Full vertical vehicle model. .. 61

3.11 Extended half-model. .. 63

3.12 Passive (left) and semi-active (right) quarter-car models. 65

3.13 Dissipative domain $\mathcal{D}(c_{\text{min}}, c_{\text{max}}, c^0)$ graphical illustration. 66

4.1 Nonlinear suspension stiffness and stroke limitations. 75

4.2 Illustration of the performance objectives on Bode diagrams. Comfort oriented diagram F_z (top) and Road-holding oriented diagram $F_{z_{\text{def}}}$ (bottom). Solid line: c_{min}, Dashed: c_{max}. .. 77

4.3 Nonlinear frequency response (FR, obtained from Algorithm 1) of the passive quarter-car model for varying damping values: nominal $c = 1500$ Ns/m (solid line), soft $c = c_{\text{min}} = 900$ Ns/m (dashed line) and stiff $c = c_{\text{max}} = 4300$ Ns/m (solid rounded line). Comfort oriented diagram \tilde{F}_z (top) and road-holding oriented diagram $\tilde{F}_{z_{\text{def}}}$ (bottom). 82

4.4 Normalized performance criteria comparison for different damping values. Comfort criteria – \tilde{J}_c (left histogram set) and road-holding criteria – \tilde{J}_{rh} (right histogram set). ... 84

4.5 Normalized performance criteria trade-off ($\{\tilde{J}_c, \tilde{J}_{rh}\}$ trade-off) for a passive suspension system, with varying damping value $c \in [100, 10,000]$ (solid line with varying intensity). Dots indicate the criteria values for three frozen damping values (i.e. $c = c_{\text{min}} = 900$ Ns/m, $c = c_{\text{nom}} = 1500$ Ns/m and $c = c_{\text{max}} = 4300$ Ns/m). .. 85

4.6 Bump road disturbance (top) and its time and frequency representation (bottom left and right respectively). .. 86

4.7 Road bump simulation of the passive quarter-car model for two configurations: hard damping (c_{max}, solid lines) and soft damping (c_{min}, dashed lines). Chassis displacement ($z(t)$), tire deflection ($z_{\text{def}}(t)$) and suspension deflection ($z_{\text{def}}(t)$). .. 87

4.8 Broad band white noise example. Time response (left) and its spectrum (right). ... 89
Semi-Active Suspension Control Design for Vehicles

5.1 Semi-active suspension optimal performance computation scheme. 94
5.2 Illustration of the domain $\mathcal{D}(c_{\text{min}}, c_{\text{max}}, c^0)$ modification as a function of c^0. Left: $c^0 = 0$, right: $c^0 = \frac{c_{\text{min}} + c_{\text{max}}}{2}$... 96
5.3 Comparison of the continuous and discrete-time (with $T_e = 1$ ms) models frequency response (Algorithm 1). Top: \tilde{F}_z, bottom: $\tilde{F}_{z_{\text{def}}}$ 97
5.4 Optimal comfort oriented frequency response of \tilde{F}_z and $\tilde{F}_{z_{\text{def}}}$ obtained by the optimization algorithm, for varying prediction horizon N, for comfort objective (i.e. cost function \tilde{J}_c) ... 100
5.5 Optimal road-holding frequency response of \tilde{F}_z and $\tilde{F}_{z_{\text{def}}}$ obtained by the optimization algorithm, for varying prediction horizon N, for road-holding objective (i.e. cost function \tilde{J}_{rh}) 101
5.6 Normalized performance criteria comparison for increasing prediction horizon N: comfort criteria — when cost function is \tilde{J}_c (left histogram set) and road-holding criteria — when cost function is \tilde{J}_{rh} (right histogram set) ... 102
5.7 Normalized performance criteria trade-off ($\{\tilde{J}_c, \tilde{J}_{rh}\}$ trade-off) for a passive suspension system, with damping value $c \in [c_{\text{min}}, c_{\text{max}}]$ (solid line with varying intensity) and optimal comfort/road-holding bounds, with $\alpha \in [0; 1]$ (dash dotted line) .. 102
5.8 Bump test responses of the optimal comfort oriented control (solid small round symbol), optimal road-holding oriented (solid large round symbol) and passive with nominal damping value (solid line). From top to bottom: chassis displacement (z), chassis acceleration (\ddot{z}) and tire deflection (z_{def}) ... 105

5.1 Skyhook ideal principle illustration. ... 108
5.2 Comfort oriented control law frequency response F_z (top) and $F_{z_{\text{def}}}$ (bottom) ... 112
5.3 Normalized performance criteria comparison for different comfort oriented control strategies: comfort criteria — when cost function is \tilde{J}_c (left histogram set) and road-holding criteria — when cost function is \tilde{J}_{rh} (right histogram set) .. 114
5.4 Road-holding oriented control law frequency response F_z (top) and $F_{z_{\text{def}}}$ (bottom) ... 115
5.5 Normalized performance criteria comparison for the different road-holding oriented control strategies: comfort criteria — when cost function is \tilde{J}_c (left histogram set) and road-holding criteria — when cost function is \tilde{J}_{rh} (right histogram set) .. 116
Semi-Active Suspension Control Design for Vehicles

6.6 Normalized performance criteria trade-off for the presented control algorithms, compared to the passive suspension system, with damping value \(c \in [c_{\text{min}}; c_{\text{max}}] \) (solid line with varying intensity), optimal comfort and road-holding bounds (dash dotted line). ... 116

7.1 Frequency response of \(\tilde{F}_z \) and \(\tilde{F}_{z_{\text{def}}} \) of the mixed SH-ADD with respect to the passive car (with minimal and maximal damping)......................... 123

7.2 Normalized performance criteria comparison: comfort criteria – \(J_c \) (left histogram set) and road-holding criteria – \(J_{rh} \) (right histogram set). SH-ADD comparison with respect to comfort oriented algorithms............. 124

7.3 Normalized performance criteria trade-off for the presented comfort oriented control algorithms and Mixed SH-ADD, compared to the passive suspension system, with damping value \(c \in [c_{\text{min}}; c_{\text{max}}] \) (solid line with varying intensity), optimal comfort and road-holding bounds (dash dotted line). ... 124

7.4 Frequency response of \(\tilde{F}_z \) and \(\tilde{F}_{z_{\text{def}}} \) of the mixed 1-sensor SH-ADD with respect to the passive car (with minimal and maximal damping). 126

7.5 Normalized performance criteria comparison: comfort criteria – \(J_c \) (left histogram set) and road-holding criteria – \(J_{rh} \) (right histogram set). SH-ADD 1-sensor comparison with respect to comfort oriented algorithms. 127

7.6 Normalized performance criteria trade-off for the presented comfort oriented control algorithms and 1-sensor mixed SH-ADD, compared to the passive suspension system, with damping value \(c \in [c_{\text{min}}; c_{\text{max}}] \) (solid line with varying intensity), optimal comfort and road-holding bounds (dash dotted line). ... 127

7.7 Pictorial analysis of the inequality (7.4). .. 129

7.8 Function \(\frac{D_k(\omega)}{T} \) (in normalized frequency). ... 129

7.9 Example of evolution of the autonomous systems \(\ddot{z}(t) = \alpha \dot{z}(t) \) and \(\ddot{z}(t) = -\alpha \dot{z}(t) \) (starting from \(\dot{z}(0) > 0 \)). ... 130

7.10 Sensitivity to the parameter \(\alpha \) of the mixed SH-ADD performances. 131

7.11 Time responses of soft damping suspension (\(c_{\text{min}} \)), hard damping suspension (\(c_{\text{max}} \)), SH, ADD, and mixed-SH-ADD to three pure-tone road disturbances: 2.1 Hz (top), 4 Hz (middle) and 12 Hz (bottom). 132

7.12 Time responses of soft damping suspension (\(c_{\text{min}} \)), hard damping suspension (\(c_{\text{max}} \)) and 1-Sensor-Mixed (1SM) to three pure-tone road disturbances: 2.1 Hz (top), 4 Hz (middle) and 12 Hz (bottom). 134

7.13 Acceleration (top) and tire deflection (bottom) responses to a triangle bump on the road profile: passive soft damping (\(c_{\text{min}} \)), hard damping (\(c_{\text{max}} \)), SH, ADD and mixed SH-ADD. ... 136
7.14 Acceleration (top) and tire deflection (bottom) responses to a triangle bump on the road profile: passive soft damping (c_{min}), hard damping (c_{max}) and 1-Sensor-Mixed. ... 137

8.1 Dissipative domain \mathcal{D} graphical illustration. ... 141
8.2 Clipping function illustration. .. 141
8.3 Generalized LPV scheme for the “LPV semi-active” control design. 143
8.4 Generalized \mathcal{H}_∞ control scheme. ... 145
8.5 Implementation scheme. ... 151
8.6 Controller 1: Bode diagrams of F_z (top) and F_{zt} (bottom), evaluated at each vertex of the polytope. ... 153
8.7 Controller 2: Bode diagrams of F_z (top) and F_{zt} (bottom), evaluated at each vertex of the polytope. ... 155
8.8 Controller 1: Force vs. Deflection speed diagram of the frequency response (with $z_s = 5$ cm from 1 to 20 Hz). “LPV semi-active” comfort oriented (round symbols), $c_{\text{min}} = 900$ Ns/m and $c_{\text{max}} = 4300$ Ns/m limits (solid lines). ... 156
8.9 Controller 1: Frequency response of \tilde{F}_z (top) and $\tilde{F}_{z_{def}}$ (bottom). 157
8.10 Controller 2: Force vs. deflection speed diagram of the frequency response (with $z_s = 5$ cm from 1 to 20 Hz). “LPV semi-active” road-holding oriented (round symbols), $c_{\text{min}} = 900$ Ns/m and $c_{\text{max}} = 4300$ Ns/m limits (solid lines). ... 158
8.11 Controller 2: Frequency response of \tilde{F}_z (top) and $\tilde{F}_{z_{def}}$ (bottom). 159
8.12 Normalized performance criteria comparison: comfort oriented “LPV semi-active” design compared to other comfort oriented control laws (top) and road-holding oriented “LPV semi-active” design compared to other road-holding control laws (bottom). Comfort criteria – J_c (left histogram set) and road-holding criteria – J_{rh} (right histogram set). 161
8.13 Normalized performance criteria trade-off for the presented control algorithms and “LPV semi-active” (controller parametrization 1 and 2), compared to the passive suspension system, with damping value $c \in [c_{\text{min}}; c_{\text{max}}]$ (solid line with varying intensity), optimal comfort and road-holding bounds (dash dotted line). ... 162
8.14 Bump test: Time response of chassis z – comfort criteria. 163
8.15 Bump test: Time response of the suspension deflection z_{def} – suspension limitations. ... 163
8.16 Bump test: Time response of the wheel displacement z_{t} (top) and the suspension deflection z_{def} (bottom) – road-holding criteria. 164
8.17 Bump test: Force vs. deflection speed diagram. $c_{\text{min}} = 900$ Ns/m and $c_{\text{max}} = 4300$ Ns/m. ... 165
Semi-Active Suspension Control Design for Vehicles

A.1 Skyhook 2-states and linear performance/complexity radar diagram 171
A.2 ADD and PDD performance/complexity radar diagram ... 172
A.3 Groundhook 2-states performance/complexity radar diagram 173
A.4 SH-ADD performance/complexity radar diagram ... 173
A.5 LPV Semi-active linear performance/complexity radar diagram 174
A.6 (Hybrid) MPC performance/complexity radar diagram ... 175

B.1 Damper characteristics in the speed-force domain. Left: minimum damping c_{min}. Right: maximum damping c_{max} .. 178
B.2 Details of the transient behavior of the damper subject to a step-like variation of the damping request ... 179
B.3 “Quarter-car” representation of the rear part of the motorcycle 180
B.4 Example of sensor installation .. 182
B.5 Left: Bode diagram of the ideal and numerical integrator. Right: Bode diagram of the ideal and numerical derivator ... 183
B.6 Example of numerical integration and derivation. Stroke velocity of the suspension computed as derivation of potentiometer signal and difference of the body-wheel accelerometer signals .. 184
B.7 Example of time-varying sinusoidal excitation experiment (“frequency sweep”), displayed in the time-domain ... 186
B.8 Frequency domain filtering performance of the two extreme fixed damping ratios (sweep excitation) .. 187
B.9 Frequency domain filtering performance of the two classical SH and ADD algorithms (sweep excitation) .. 188
B.10 Frequency domain filtering performance of the Mix-1-Sensor algorithm (sweep excitation) .. 189
B.11 Frequency domain filtering performance of the SH and Mix-1-S algorithms (random walk excitation) ... 190
B.12 Comparison of all the tested configurations using the condensed index $J_{\text{...}}$ 191
B.13 Time response to a 45 mm bump excitation ... 191
List of Tables

1 List of mathematical symbols and variables used in the book.................. xxix
2 List of acronyms used in the book. .. xxx
3 List of model variables used in the book (unless explicitly specified). xxxi

1.1 Automotive parameters set (passive reference model)12
1.2 Motorcycle parameters set (passive reference model)13
2.1 Classification of electronically controlled suspension24