Contents

List of Figures, Tables and Boxes ix
Acknowledgements xvii
Foreword xix
Introduction and Overview xxi

1 A Highly Mobile Planet and Its Challenges: Automobile Dependence,
 Equity and Inequity 1
 Sustainable transportation 1
 What is sustainable transportation about? 1
 Unsustainable transportation: The magnitude of the problem 3
 Hypermobility 3
 The problems of automobile dependence 7
 Equity and auto dependence 16
 Conclusions 21

2 Automobile Cities, the Car Culture and Alternative Possibilities 25
 Introduction 25
 Walking cities, transit cities and automobile cities 25
 Additional lessons from city types 29
 Car culture 31
 Tourism: The car culture evolves into the fly-drive and
 recreational vehicle cultures 42
 Conclusions 46

3 History of Sustainable and Unsustainable Transportation:
 From Walking to Wheels and Back to Walking 51
 Transportation history: The intersection of modes, infrastructure and society 51
 Transportation infrastructure: From animal paths to ‘Good Roads’ 63
 The rise of automobility 66
 Rail and railways 74
 Maritime and water travel 75
 Feat of flying 76
 Telecommunications and transportation 77
 Lessons for sustainable transportation 78

4 Modes, Roads and Routes: Technologies, Infrastructure,
 Functions and Interrelatedness 87
 Introduction 87
 In-town modes: Getting to work, school, shopping, services and recreation 88
 Regional–metropolitan area modes: Long commutes, regional services,
 recreation, peak demand 102
The barrier effects of different rights of way	104
Long distance: Modes and types of travel	105
Sustainability considerations	113
Futuristic modes	118
Conclusions	120

5 Moving Freight, Logistics and Supply Chains in a More Sustainable Direction | 123 |
Introduction and overview	123
Background to current freight movement factors	125
Factors that shape freight movement: Supply chains, logistical systems and shipping strategies	125
Problems of global supply chains	138
Total logistics cost: Widgets near or widgets far?	139
Elements aimed at increasing freight sustainability	140
Considerations of policy change	148
De-globalization of freight?	150

6 Transportation Economics and Investment: Improving Analysis and Investment Strategies | 153 |
Introduction	153
Basic concepts and principles	154
Current evaluation methods	155
Hidden and intentional subsidies and externalities	159
Opportunity costs	167
Critique of current methods with respect to sustainable outcomes	171
Regulation versus pricing	172
Time–area: An important tool for analysing a transportation investment	174
Moving public policy and investment evaluation towards promoting sustainability	174
Case studies	179

7 Public Policy and Effective Citizen Participation: Leadership, Deliberation, Back-Casting, Scenarios, Visualization and Visioning | 189 |
The public, policy and participation	189
Transportation policy: From mobility promotion to mobility management and sustainability	190
The public and participation	196
Public participation in transportation	200
From business as usual to sustainability in transportation	210
8 A New Planning Paradigm: From Integrated Planning, Policy and Mobility Management to Repair, Regeneration and Renewal
Lessons learned from preceding chapters 217
The recognition of the need for a new paradigm: 217
The Buchanan Report and its critics 221
Overview of the new paradigm: Integrated policy-making, planning and mobility management 223
Towards better management of existing transportation features 223
Integrated planning 228
Moving from planning and policy to regeneration, repair and renewal 236
Sustainable transportation agenda and priorities 253
From the new paradigm to its embodiment 253

9 Exemplars of Sustainable Transportation: Walking the Talk in Vancouver, Portland, Boulder, Freiburg, Seoul and Surubaya
Introduction 259
The exemplars 261
Conclusions 295

10 Conclusion: Growing More Exemplars
Necessities for growing more exemplars 299
Success builds success: The power of demonstration projects 308

Appendix 1: Transit Primer 313

Appendix 2: Sustainable Transportation Resources Toolbox 319

List of Acronyms and Abbreviations 323
Glossary 327
Index 329
List of Figures, Tables and Boxes

Figures

1.1 Huge highways and their interchanges devour and divide the landscape 5
1.2 ‘Highways divide habitats’ 7
1.3 Private passenger transport energy use per capita in world cities, 1995 8
1.4 A California service station proudly proclaims its mission as the ‘Smog Shop’ 9
1.5 Transportation emissions per capita in world cities, 1995 9
1.6 Aerial view of older neighbourhood with wide streets and large parking lots, Seattle, Washington 10
1.7 Transit system service provision and use per capita in world cities, 1995 10
1.8 ‘Waiting for the Interurban’ 11
1.9 Transit operating cost recovery in world cities, 1995 11
1.10 Proportion of city wealth spent on passenger transportation and the transit component in world cities, 1995 12
1.11 Transit, pedestrians and bicyclists all share Amsterdam’s car-free centre 19
1.12 Sprawl development invades the beautiful mountains of the San Francisco Bay area (California) 21
2.1 Conceptual diagram of the walking city 28
2.2 Conceptual diagram of the transit city 28
2.3 Conceptual diagram of the automobile city 28
2.4 A conclave of pink Cadillacs: Rewards for very productive cosmetics salespersons 29
2.5 ‘Lose your license, become a bicyclist’, warns the California Office of Traffic Safety 31
2.6 ‘Automobiles: The myth, the reality’ 35
2.7 ‘The traffic report’ 39
2.8 Hotel garage entries across the sidewalk are typical of ‘carchitecture’, San Francisco central business district 41
2.9 Recreational vehicles and sports utility vehicles gather to spawn along the California–Oregon coast 42
2.10 Transit facility dwarfed by parking, South Kirkland Park & Ride lot 46
3.1 Modernity meets tradition: Hauling rocks in a carreta in today’s Costa Rica 55
3.2 ‘da Vinci revisited’ 59
3.3 A 19th-century wooden-wheeled velocipede attracts people to an antique store in Bruges, Belgium 60
3.4 Historic cable car at the Smithsonian National Museum of American History: The front metalwork protruding at an angle was lowered in operation in order to act as a ‘pedestrian catcher’ 68
3.5 Once targeted for a freeway interchange in the 1960s, the commercial district of Fairhaven now features a village green ringed by a bookstore, café, restaurants and stores

3.6 Nineteenth-century rail bicycle and early form of railed mine ore hauler at the Museum of Transport and Technology, Berlin

3.7 Puget Sound replica of a brig that would ply inland and coastal waters in past centuries

3.8 Wilbur (or is it Orville?) – the Wright brothers' airplane – flies among the astronauts at the Smithsonian National Air and Space Museum

4.1 Effective bus and train transfers at light rail transit stations, Portland, Oregon

4.2 Portland's Park Blocks connecting the central business district with Portland State University attract pedestrians and people wheelchairs

4.3 Floating pedestrian and bicycle bridge across the Danube, Vienna

4.4 Bicycle lanes, such as this one in Rotterdam, can separate and protect riders from traffic

4.5 Todd and Heather Elsworth and their daughter, Violet, are a recumbent family in Bellingham, Washington

4.6 The late Susie Stevens, bicycle advocate, demonstrates a bicycle that folds in and out of a suitcase which can also function as a bicycle trailer

4.7 Electrified trolley bus in Seattle, Washington; electrified mini-bus in Montmartre, Paris; a properly done transit mall in Portland, Oregon, with lanes sufficient for boarding passengers as well as for passing buses

4.8 Modern light rail transit on the T3 line in right of way B in Paris crosses an intersection where traffic has been stopped by a transit priority signal control; Vienna's ultra-low floor LRT operates in RoW A and B

4.9 Rolling streetcar museum with kerb service in RoW C, Vienna; private buses and taxicabs vie for passengers in RoW C, Lima, Peru

4.10 SEPTA's rail rapid transit operates in RoW A in Philadelphia, Pennsylvania

4.11 Minicabs carry two passengers around Havana

4.12 Sounder commuter train, Seattle, Washington; smaller commuter train, Portland, Oregon

4.13 Passenger and car ferry, Washington State Ferries, Seattle

4.14 Barrier effect of large urban highway, RoW C, Ulsan City, Korea

4.15 Intercity express trains serve a very different purpose than mountain tourist trains

4.16 The Alaska Marine Highway passenger/vehicle ferry, south-east Alaska to Bellingham, Washington

4.17 Airliners combine cargo and passenger functions

4.18 Total transport energy consumed decreases as the city becomes more transit oriented due to higher density
4.19 Translohr rubber-tyred single-guide rail vehicle blurs modal distinctions in Padua, Italy

4.20 The Segway Personal Transporter is a vehicle increasingly used for police patrolling in cities across the world, as seen here in one of the ubiquitous counter-flow bicycle lanes in Frankfurt, Germany

5.1 Trend of freight movement, US and European Union

5.2 Typical supply chain for consumer goods figure

5.3 Truck-to-truck transfer facilities require much space, inside and outside, and a location near a major highway

5.4 Container ships can carry several thousands of 20 foot equivalent units

5.5 Double-stack container trains can be up to 1 mile long

5.6 Stefanie Böge’s strawberry yogurt transportation relationships

5.7 Value of trade between the US and China per year

5.8 Intermodal breakeven distance

5.9 US international trade by weight and volume, 2003

5.10 Moving day on bicycles: Amsterdam and Boulder, Colorado

5.11 Swedish postal delivery bicycle

6.1 Typical diagram used to compute net present value of a project

6.2 Effect on value of US$1 from discounting

6.3 Early bird reduced parking

6.4 Highway subsidies twist language: ‘Public investment, wasteful subsidy’

6.5 The ‘good old days’ before the 1973 oil embargo with price in US cents per gallon

6.6 This parking garage consumes a square block of some of the most valuable real estate in the heart of San Francisco’s central business district

6.7 Donkey parking lot in a Berber village, Atlas Mountains, Morocco

6.8 Consumption of street space by people: People in their cars; same number of people without cars; same number of individuals on one streetcar

6.9 Cumulative time-area graph

6.10 Victorian house transformed into transit station, Toronto, Ontario

6.11 ‘And tow’ring o’er his head in triumph ride’: The Trojan priest Laocoön and his sons are attacked by poisonous highway serpents

7.1 Skaters in the pedestrian square, Haarlem, The Netherlands; child and bicyclist on older street, Stavanger, Norway; antique cannon and cannonball bollards, Old Havana, Cuba, are authenticated by Latin American Colonial historian Nancy Elena van Deusen

7.2 Vehicles blocking or encroaching upon pedestrian space signify a failure of policy and law enforcement

7.3 This attractive north-east Seattle (Washington) traffic circle slows motor vehicles, makes the intersection safer and is maintained by the neighbourhood; the flag indicates that traffic calming can be patriotic

7.4 Community participation helped to plan the community transit network, Boulder, Colorado: Routes are given catchy names, buses are decorated and passengers are made to feel welcome
7.5 The eight rungs of Arnstein’s ‘Ladder of Citizen Participation’ 209
7.6 Residents help to shape a new walking and cycling route in Islington, London 209
8.1 ‘Alternative fuel vehicles’ 219
8.2 Some cities are facilitating bicycling with counter-flow bicycle lanes on one-way streets, as in this Amsterdam, The Netherlands, example; bicycle rentals strategically located around town, such as the Sevici rental rack near the downtown river path in Seville, Spain, are proving popular in many cities and reintroducing many residents to this pleasant form of mobility 225
8.3 Poorly located freeway transit stop near the University of Washington, Seattle 226
8.4 Sustainable transportation as the intersection of three major domains 230
8.5 Even small cities such as Schwabisch-Gmund in southern Germany had pedestrianized their centres by 1989; the town square of St Valery-en-Caux in Normandy, France, serves as a pedestrianized farmers’ market several days of the week, and as a church parking lot for automobiles on Sundays 238
8.6 The Netherlands’ ‘woonerf’, or shared traffic-slowed and parking-limited streets 239
8.7 In 2008 Beth Beyers inaugurated a ‘Park-ing Day’ when she covered over a parking space in downtown Bellingham, Washington, with sod, placed a sign informing passers-by of the burden excessive parking space places on its central business district, and invited them to enjoy a bench, picnic or make music 240
8.8 ‘Divide cities into two sections: Driving and non-driving’ 245
8.9 When small lanes, trees and shrubs replace large streets, surprisingly dense single-family residential neighbourhoods can be achieved; Pedestrianized neighbourhood; tetra-cycle, both at Toronto Islands 247
8.10 Joining hands after transforming an intersection into ‘Share It Square’, Portland, Oregon 249
8.11 Celebrating ‘Freda’s Tree’, another ‘repaired’ intersection, Portland, Oregon 250
8.12 Taking a Jane’s Walk to discuss how to repair and improve a pedestrian pathway 251
8.13 Jane Jacobs and other Stop Spadina veterans, joined by Wolfgang Zuckermann and Katie Alvord, at the 20th-anniversary celebration and Eco-City Conference, Toronto Islands, 1991 252
9.1 View of False Creek South, Vancouver, British Columbia – an area that would have been lost to freeway infrastructure and is now a walkable neighbourhood 261
9.2 Coal Harbour Redevelopment, downtown Vancouver, British Columbia, with its fine attention to the walkability of the public realm 262
9.3 High-density clustering of mixed-use development at Joyce–Collingwood Station, Burnaby, Vancouver 265
9.4 Arbutus Lands inner-city redevelopment, Vancouver, British Columbia 265
9.5 Port Moody town centre’s attractive public realm, suburban
Vancouver 267
9.6 Less attractive transit-oriented development, car
parking and Park & Ride, Surrey Central, Vancouver region 268
9.7 Metropolitan Area Express passing through the Saturday market, downtown
Portland, Oregon, is beginning to look a bit like the centre of
a European city 271
9.8 Sand sculpture event at Pioneer Square Courthouse park, formerly a
parking lot, Portland, Oregon 271
9.9 Tom McCall Park, the site of a former freeway in downtown
Portland, Oregon 273
9.10 New TOD on the Gresham MAX line, Portland, Oregon 274
9.11 Portland’s streetcar running through the new high-density
revitalized Pearl District 275
9.12 Bus mall shelters and Yamhill Market station: Good design-planning
in Portland 275
9.13 Residents and visitors listen to music at the Pearl Street
pedestrian mall, Boulder, Colorado 277
9.14 Bicycle- and pedestrian-friendly Freiburg, Baden-Württemberg, Germany 283
9.15 The central pedestrian zone in the centre of Freiburg 284
9.16 Walkable, and transit- and ecologically oriented developments,
Vauban and Rieselfeld 286
9.17 High densities, mixed uses and traffic-calmed streets make
central Seoul, South Korea, quite walkable 289
9.18 Cheonggye Freeway corridor, 1980s, and construction progress on
the new river boulevard after demolition of the Cheonggye Freeway,
Seoul, South Korea 289
9.19 Aerial view of kampung density; traffic chaos and danger outside the
kampung, Surubaya, Indonesia 293
9.20 Commerce and socializing on a kampung pedestrianized tree-lined
street; kampung street used only for walking and non-motorized
transportation (‘becaks’) 294
10.1 Jane Jacobs, who used to cycle to her job at Fortune magazine in 1950s
Manhattan, inspecta a functioning bicycle transformed into mobile
artwork as part of the ‘Bicycles as Art’ competition, Toronto,
Ontario (1991) 305
10.2 While waiting for the new Portland, Oregon, suburban Westside Diesel
Multiple Unit, regional train riders can amuse themselves at
this unique ‘talking heads’ board game 307
10.3 Stilt-walkers and other street performers in car-free Old Havana, Cuba
307
10.4 It takes imagination and creativity to introduce a Japanese restaurant
on wheels to Zurich’s streetcar tracks, Switzerland 308
Tables

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Comparison of business as usual and sustainable transportation</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The hypermobility index (with apologies to Harper's Magazine and John Adams)</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Problems associated with automobile dependence</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Transportation timeline</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Selected characteristics of urban in-town modes</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Regional–metropolitan area modes</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Selected characteristics of long-distance modes</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Energy efficiency of land passenger modes</td>
<td>117</td>
</tr>
<tr>
<td>4.5</td>
<td>Energy efficiency of air and water passenger modes</td>
<td>118</td>
</tr>
<tr>
<td>5.1</td>
<td>Major elements of the US freight transportation system, 2002</td>
<td>128</td>
</tr>
<tr>
<td>5.2</td>
<td>System mileage by year within the US</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Number of vehicles, aircraft, railcars and vessels</td>
<td>129</td>
</tr>
<tr>
<td>5.4</td>
<td>US vehicle miles of selected modes</td>
<td>130</td>
</tr>
<tr>
<td>5.5</td>
<td>Total logistics cost for widget available nearby</td>
<td>140</td>
</tr>
<tr>
<td>5.6</td>
<td>Total logistics cost for widget available far away</td>
<td>140</td>
</tr>
<tr>
<td>5.7</td>
<td>Logistics spending in the US, 2006</td>
<td>142</td>
</tr>
<tr>
<td>5.8</td>
<td>All international trade by weight and volume</td>
<td>145</td>
</tr>
<tr>
<td>7.1</td>
<td>Cities moving towards sustainable transportation: A selection</td>
<td>198</td>
</tr>
<tr>
<td>7.2</td>
<td>Policy characteristics: Business as usual versus sustainable transportation</td>
<td>198</td>
</tr>
<tr>
<td>7.3</td>
<td>Modal split (for all residents' trips), 1990</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>Summary of transportation demand management strategies and tools</td>
<td>226</td>
</tr>
<tr>
<td>9.1</td>
<td>Vancouver key figures</td>
<td>261</td>
</tr>
<tr>
<td>9.2</td>
<td>Portland key figures</td>
<td>270</td>
</tr>
<tr>
<td>9.3</td>
<td>Boulder/Denver key figures</td>
<td>276</td>
</tr>
<tr>
<td>9.4</td>
<td>Boulder's travel patterns compared to US averages</td>
<td>278</td>
</tr>
<tr>
<td>9.5</td>
<td>Freiburg key figures</td>
<td>280</td>
</tr>
<tr>
<td>9.6</td>
<td>Some basic transportation-related data for Freiburg compared to other cities, 2005–2008</td>
<td>282</td>
</tr>
<tr>
<td>9.7</td>
<td>Relative share of non-pedestrian trips by mode in Freiburg</td>
<td>282</td>
</tr>
<tr>
<td>9.8</td>
<td>Seoul key figures</td>
<td>287</td>
</tr>
<tr>
<td>9.9</td>
<td>Seoul's transportation characteristics compared to other global cities, 1995</td>
<td>288</td>
</tr>
<tr>
<td>9.10</td>
<td>Surubaya key figures</td>
<td>291</td>
</tr>
</tbody>
</table>
10.5 Kirkland, Washington, in the Seattle area rerouted a lakefront road and converted the original one to a mile-long promenade for bicyclists and pedestrians

A1.1 Diagram of three different route configurations
A1.2 Queue bypass

Tables

1.1 Comparison of business as usual and sustainable transportation 3
1.2 The hypermobility index (with apologies to Harper’s Magazine and John Adams) 6
1.3 Problems associated with automobile dependence 7
3.1 Transportation timeline 52
4.1 Selected characteristics of urban in-town modes 90
4.2 Regional–metropolitan area modes 106
4.3 Selected characteristics of long-distance modes 107
4.4 Energy efficiency of land passenger modes 117
4.5 Energy efficiency of air and water passenger modes 118
5.1 Major elements of the US freight transportation system, 2002 128
5.2 System mileage by year within the US 128
5.3 Number of vehicles, aircraft, railcars and vessels 129
5.4 US vehicle miles of selected modes 130
5.5 Total logistics cost for widget available nearby 140
5.6 Total logistics cost for widget available far away 140
5.7 Logistics spending in the US, 2006 142
5.8 All international trade by weight and volume 145
7.1 Cities moving towards sustainable transportation: A selection 198
7.2 Policy characteristics: Business as usual versus sustainable transportation 198
7.3 Modal split (for all residents’ trips), 1990 205
8.1 Summary of transportation demand management strategies and tools 226
9.1 Vancouver key figures 261
9.2 Portland key figures 270
9.3 Boulder/Denver key figures 276
9.4 Boulder’s travel patterns compared to US averages 278
9.5 Freiburg key figures 280
9.6 Some basic transportation-related data for Freiburg compared to other cities, 2005–2008 282
9.7 Relative share of non-pedestrian trips by mode in Freiburg 282
9.8 Seoul key figures 287
9.9 Seoul’s transportation characteristics compared to other global cities, 1995 288
9.10 Surubaya key figures 291
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Portland’s City Repair</td>
<td>250</td>
</tr>
<tr>
<td>8.5</td>
<td>Transit Camp</td>
<td>251</td>
</tr>
<tr>
<td>8.6</td>
<td>Jane’s Walk</td>
<td>252</td>
</tr>
<tr>
<td>8.7</td>
<td>Kenneth R. Schneider: Fighting for change</td>
<td>254</td>
</tr>
<tr>
<td>10.1</td>
<td>Jane Jacobs: An enduring legacy</td>
<td>304</td>
</tr>
</tbody>
</table>
This is the core text I have been searching for! The book provides an excellent introduction to sustainable transportation. It is comprehensive, highly readable and puts a new critical, but optimistic, angle to the way we look at transportation sustainability. Essential reading for students, researchers and practitioners.

Professor Mark Zulcgeest, Urban Transport, University of Twente, and Secretary, Cycling Academic Network, The Netherlands

'A significant improvement in the level of debate and information around this important topic ... takes us firmly into the real world of policy, leadership, innovation, citizen action, implementation, the role of visionary politicians [and] draws on a body of new research from locations around the world ... a valuable contribution.'

Professor John Whitelegg, Stockholm Environment Institute, University of York, UK

'This is an excellent detailed manual for serious planning professionals. It goes beyond polemics to offer a sturdy blueprint for a saner future as we leave behind the age of cheap oil and Happy Motoring.'

James Howard Kunstler, author of The Long Emergency, The Geography of Nowhere and Home from Nowhere

[The authors] have combined careful research with principled advocacy ... and have assembled an encyclopaedic and useable catalogue of the theory, technique and practice needed for recovery from the twentieth century's long delusion about hypermobility, and it comes not a moment too soon!'

FROM THE FOREWORD BY HANK DITTMAR

This essential multi-authored work reflects a new sustainable transportation planning paradigm. It explores the concepts of sustainable development and sustainable transportation, describes practical techniques for comprehensive evaluation, provides tools for multi-modal transport planning, and presents innovative mobility management solutions to transportation problems. Featuring extensive international examples and case studies, text boxes, graphics, recommended reading and end-of-chapter questions, the authors draw on considerable teaching and research experience to present an essential, groundbreaking and authoritative work on sustainable transportation.

Preston L. Schiller is Adjunct Lecturer in the School of Urban and Regional Planning at Queen's University in Kingston, Ontario. Eric C. Bruun, an engineer and transportation systems expert, by profession currently teaches Manufacturing, Logistics and Transportation courses at the University of Pennsylvania. Dr Jeffrey R. Kenworthy is Professor in Sustainable Cities in the Curtin University Sustainability Policy Institute (CUSP) at Curtin University in Perth, Western Australia.

earthsan
ing for a sustainable future

www.earthsan.co.uk

Earthsan strives to minimize its impact on the environment.

Transport / Planning

Cover photos © Jeffrey R. Kenworthy