Combustion Instability

M. S. Natanzon

Edited by
Fred E. C. Culick

Progress in Astronautics and Aeronautics

Frank K. Lu, Editor-in-Chief
Volume 222
Table of Contents

Editor’s Preface ... xiii
Preface to the Second Edition ... xv
Bibliography ... xxv

A Short Biography Contributed by Mrs. Natanzon and
Professor V. Bazarov ... xxvii

Chapter 1. Low Frequency Oscillations in Liquid Rocket
Combustion Chambers .. 1
Low-Frequency Oscillations in a Liquid Rocket Combustion Chamber 2
Supplementary Analysis of the Mechanism of Loss of Stability 14
Instability Excited by Entropy Waves ... 23
Effects of the Feed System on Stability 33

Chapter 2. Phenomenological Models of the Combustion Process 43
Variable Time Lag .. 44
Smooth Burnout Curves .. 49

Chapter 3. The Acoustic Response of the Combustion Chamber 61
The Wave Equation and Its Solution .. 62
The Acoustic Response of a Combustion Chamber with a Short Subsonic Part of the Nozzle ... 66
Effect of a Finite Length Nozzle on the APFC of the Acoustic Component .. 78
Experimental Determination of the APFC of the Acoustic Component .. 87

Chapter 4. High-Frequency (Acoustic) Oscillations in a Combustion Chamber .. 95
Stability Limits ... 96
Discussion of the Results .. 107
Anti-Pulsating Devices ... 113
Chapter 5. Nonlinear Effects .. 125
Some Information from the Theory of Nonlinear Vibrations 125
Nonlinear Vibrations in a Combustion Chamber 133

Chapter 6. Application of the Frequency-Response Method for
Studying the Dynamical Properties of the Combustion Zone 147
Block Diagram and the Matrix of the Frequency Characteristics of the
Combustion Zone; The Characteristic Equation of Locked 148
Dynamical Model for the Combustion of Fuel Drops in a Flow of
Gaseous Oxidizer [44] .. 154
Standard Form of the Equations of Excited Motion [44] 169
Calculation of the Matrix for the Frequency Characteristics of the
Combustion Zone and the Feedback Vector [44] 184

Chapter 7. Stability of Combustion of Fuel Drops in a Flow of
Gaseous Oxidizer [41, 45] .. 191
Formulas for Calculations ... 191
Steady State .. 198
Stability Limits ... 201
Analysis of the Mechanisms of Feedback 208

Chapter 8. Bifurcations of Steady Combustion Regimes and Their
Effect on the Onset of High-Frequency Oscillations 217
Physical Picture of the Phenomenon 218
One-Dimensional Model of Combustion for the Gas–Liquid Scheme 221
Two Regimes of Combustion (One-Dimensional Model) 226
Experimental Data .. 233
A Two-Dimensional Model Describing Bifurcations of the Combustion
Zone for the Gas–Gas System [70] 236

References ... 245

Index ... 251

Supporting Materials ... 259
ABOUT THE BOOK

Combustion instability has long been recognized as one of the most important but difficult problems in the development of propulsion systems. Both the U.S. and the former Soviet Union were working during the Cold War to solve the instability problem at the same time. However, the scientific basis and engineering approach employed by the Soviets remained largely unknown to the Western world.

This book—much of it formerly classified material—is a clear exposition of much of the theoretical work on combustion instabilities performed in support of the Soviet liquid rocket program during its most vigorous period. While there are similarities between Western and Eastern work, there are many distinct differences. The author was one of the small group of Soviet theorists actively engaged in all of the Soviet liquid rocket programs. His development of the field is firmly grounded in fundamental ideas, and progresses toward applications. One chapter is new since the original Russian edition, covering both theory and experiment for bifurcations of dynamical behavior in liquid rocket chambers.

The book was written by Professor M. S. Natanzon in Russia and edited by Professor Fred E. C. Culick of Caltech, two internationally renowned experts in the field.

ABOUT THE AUTHOR

Miron Semyonovich Natanzon was born in 1926 in the city of Karkov, Ukraine. He began his aviation career during WWII at the age of 16 when he entered the Voronej Aviation Institute in Uzbekistan. After the war, he entered and graduated from the Moscow Aviation Institute where he specialized in aeroengine design and construction. He then worked at NII (now known as the Keldysh Research Center) where he made his initial contribution to the field of unsteady combustion. In 1949, he proposed a model to explain loss of stability in liquid rocket engines. The fundamental formulation of that model is still used. Later that same year, he was forced to leave the organization after his father’s arrest by the KGB. For eight years, he continued working at home on problems of theoretical physics and publishing articles on his research. He later returned to NII, making significant contributions to the development of liquid rocket engines. The government subsequently awarded him the title “Honored Scientist and Technician of Russia.”

ABOUT THE EDITOR

Fred E. C. Culick is Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering (Retired) at the California Institute of Technology.