Contents

List of contributors page ix
Preface ... xiii
David S. Ginley and David Cahen xvii
Acknowledgments

Part 1 Energy and the environment: the global landscape

1. A primer on climate change
 Melinda Marquis and Pieter Tans 2

2. The global energy landscape and energy security
 V. S. Arunachalam and Anshu Bharadwaj 26

3. Sustainability and energy conversions
 Franklin M. Orr, Jr. and Sally M. Benson 36

4. Energy cost of materials: materials for thin-film photovoltaics
 as an example
 Ajay K. Gupta and Charles A. S. Hall 48

5. Economics of materials
 Lester B. Lave and Frank R. Field III 61

6. Global energy flows
 Richard Sassoon 71

7. Global materials flows
 Fridolin Krausmann 81

8. Carbon dioxide capture and sequestration
 Sally M. Benson 90

Part 2 Nonrenewable energy sources

9. Petroleum and natural gas
 Russell R. Chianelli, Xiomara C. Kretschmer, and Stephen A. Holditch 106

10. Advancing coal conversion technologies: materials challenges
 Bryan D. Morreale, Cynthia A. Powell, and David R. Luebke 117

11. Oil shale and tar sands
 James W. Bunger 127

12. Unconventional energy sources: gas hydrates
 Carolyn A. Koh, E. Dendy Sloan, Amadeu K. Sum, and David T. Wu 137

13. Nuclear energy: current and future schemes
 Christopher R. Stanek, Robin W. Grimes, Cetin Unal, Stuart A. Maloy, and Sara C. Scott 147
14 Nuclear non-proliferation
 Siegfried S. Hecker, Matthias Engler, and Michael C. Miller

15 Nuclear-waste management and disposal
 Rodney C. Ewing and William J. Weber

16 Material requirements for controlled nuclear fusion
 Nathaniel J. Fisch, J. Luc Peterson, and Adam Cohen

Part 3 Renewable energy sources

17 Solar energy overview
 Miguel A. Contreras and Satyen Deb

18 Direct solar energy conversion with photovoltaic devices
 David S. Ginley, Reuben Collins, and David Cahen

19 Future concepts for photovoltaic energy conversion
 Jean-François Guillemoles

20 Concentrating and multijunction photovoltaics
 Daniel J. Friedman

21 Concentrating solar thermal power
 Abraham Kibus

22 Solar-thermoelectrics: direct solar thermal energy conversion
 Terry M. Tritt, Xinfeng Tang, Qingjie Zhang, and Wenjie Xie

23 Off-grid solar in the developing world
 Tiffany Tong, Wali Akande, and Winston O. Soboyejo

24 Principles of photosynthesis
 Johannes Messinger and Dmitriy Shevela

25 Biofuels and biomaterials from microbes
 Trent R. Northen

26 Biofuels from cellulosic biomass via aqueous processing
 Jian Shi, Qing Qing, Taiying Zhang, Charles E. Wyman and Todd A. Lloyd

27 Artificial photosynthesis for solar energy conversion
 Boris Rybtchinski and Michael R. Wasielewski

28 Engineering natural photosynthesis
 Huub J. M. de Groot

29 Geothermal and ocean energy
 Jiabin Han, J. William Carey, and Bruce A. Robinson

30 Wind energy
 Michael Robinson, Neil Kelley, Patrick Moriarty, Scott Schreck, David Simms, and Alan Wright

Part 4 Transportation

31 Transportation: motor vehicles
 Jerry Gibbs, Ahmad A. Pesaran, Philip S. Sklad, and Laura D. Marlini
32 Transportation: aviation
Robin G. Bennett, Linda A. Cadwell Stancin, William L. Garberry,
Timothy F. Rahmes, Peter M. Thompson, and Jeanne C. Yu

33 Transportation: shipping
David S. Ginley

34 Transportation: fully autonomous vehicles
Christopher E. Borroni-Bird and Mark W. Verbrugge

Part 5 Energy efficiency

35 Lighting
Dandan Zhu and Colin J. Humphreys

36 Energy efficient buildings
Ron Judkoff

37 Insulation science
Leon R. Glicksman and Ellann Cohen

38 Industrial energy efficiency: a case study
Joe A. Almaguer

39 Green processing: catalysis
Ronny Neumann

40 Materials availability and recycling
Randolph Kircham and Elisa Alonso

41 Life-cycle assessment
Corrie E. Clark

Part 6 Energy storage, high-penetration renewables,
and grid stabilization

42 Toward the smart grid: the US as a case study
S. Massoud Amin and Anthony M. Giacomoni

43 Consequences of high-penetration renewables
Paul Denholm

44 Electrochemical energy storage: batteries and capacitors
M. Stanley Whittingham

45 Mechanical energy storage: pumped hydro, CAES,
flywheels
Troy McBride, Benjamin Bollinger, and Dax Kepshire

46 Fuel cells
Shyam Kocha, Bryan Pivovar, and Thomas Gennett

47 Solar fuels
Christian Jooss and Helmut Tributsch

48 Solar thermal routes to fuel
Michael Epstein
Contents

49 Photoelectrochemistry and hybrid solar conversion
 Stuart Licht 692

Summary 711
 David S. Ginley and David Cohen

Appendix A: Thermodynamics 715
 Jennifer A. Nekuda Malik

Appendix B: Electrochemistry 718
 Jennifer A. Nekuda Malik

Appendix C: Units 721

Index 723
How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future?

Learn the fundamental physical, chemical, and materials science at the heart of:

- nonrenewable energy sources
- renewable energy sources
- future transportation systems
- energy efficiency
- energy storage

Whether you are a student taking an energy course or a newcomer to the field, this book will help you understand the critical relationships of the environment, energy, and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter also includes helpful features to aid understanding, including a historical overview to provide context, references for further reading, and questions for discussion. The subject is beautifully illustrated and brought to life with full-color images and color-coded sections for easy browsing, making this a complete educational package.

Fundamentals of Materials for Energy and Environmental Sustainability

Enabling today’s scientists. Educating future generations.

"...essential reading for anyone who wishes to understand today’s (and tomorrow’s) energy landscape...an invaluable source of material for college courses on energy, environmental consequences, and sustainability."

JULIA WEERTMAN,
Northwestern University

"...one of the most integrated and inclusive texts on the topics of materials for energy and environmental sustainability."

FRANCESCO PRIOLO,
MATIS CNR-IMM

"...fills an information gap in energy, environment, and sustainability...authoritative, insightful, and a thoroughly enjoyable read for the general audience, for energy analysts, and for students entering the field."

GEORGE CRABTREE,
Argonne National Laboratory
and Northern Illinois University