HYDROGEN, THE POST-OIL FUEL?

An IFP Energies nouvelles – CEA collaboration

coordinated by Édouard Freund and Paul Lucchese
Table of Contents

Preface ... V
Acknowledgements .. VII
List of authors .. IX
List of abbreviations .. XV
Introduction ... XXV

PARTIE 1
USES OF HYDROGEN

Chapitre 1
Scenarios for Deploying Hydrogen Energy
Alain Le Duigou (CEA)

1.1 Energy Prospective Models 4
1.2 Hydrogen Deployment Scenarios 5
1.3 Scenarios Developed by the IEA and the EC 5
1.4 Scenarios Developed by the Hyways / Hyfrance and Protec-H₂ Projects ... 8
1.5 Conclusion ... 13

Chapitre 2
Hydrogen in the Fuel Industry

2.1 The Issue of Hydrogen Addition in the Refining Industry 15
 Alain Quignard, Pierre Marion (IFP Energies nouvelles)

2.2 Production of Liquid Fuels from Coal 23
 François Kalaydjian (IFP Energies nouvelles)
 2.2.1 Principles of CTL Technologies 24
 2.2.1.1 Carbonisation and Pyrolysis of Coal 24
 2.2.1.2 Direct Liquefaction of Coal 25
 2.2.1.3 Indirect Liquefaction of Coal 28
 2.2.2 Financial Profitability of CTL Processes 31
Table of Contents

3.2 Hydrogen and Aeronautics .. 78

Paul Kuentzmann (ONERA)

3.2.1 Some History .. 79
3.2.2 Advantages and Disadvantages of Hydrogen as Aviation Fuel

3.2.2.1 Advantages ... 81
3.2.2.2 Disadvantages ... 82
3.2.2.3 Some Economic and Environmental Aspects 83
3.2.3 Some Projects in Progress 83
3.2.4 Conclusion .. 85

3.3 Fuel Cells ... 85

Thierry Prieux (CEA)

3.3.1 Fuel Cell Principle ... 85
3.3.2 Fuel Cell System for Transport 89
3.3.3 Some Application Examples 95
3.3.3.1 History .. 95
3.3.3.2 Some Examples of Fuel Cells for Transportation 99
3.3.3.3 The Private Car .. 101
3.3.3.4 Urban Buses .. 106
3.3.3.5 Heavy Duty Vehicles and Handling Equipment 107
3.3.3.6 Other Applications 109
3.3.4 Cost Analysis .. 111
3.3.5 Technological Progress 116
3.3.6 Deployment of the Infrastructure 120
3.3.7 Conclusion .. 123

Chapitre 4

Use of Hydrogen for Electricity Production

4.1 Thermal Power Plants (Gas and Coal) 125

Louis Samon (ALSTOM)

4.1.1 Description of the Processes and Technologies 125
4.1.1.1 Combustion of Hydrogen without CO₂ Capture 126
4.1.1.2 Combustion of Hydrogen with CO₂ Capture 129
4.1.2 Projects and Efficiency 131
4.1.2.1 IGCC without Capture 131
4.1.2.2 IGCC/IRCC with Capture 133

4.2 Internal Combustion Engines 135

Edouard Freund (IFP Energies nouvelles)

4.3 Optimisation of Intermittent Energies through the Use of Hydrogen

Pierre Odru (IFP Energies nouvelles), Sophie Avril (CEA)

4.3.1 The Inevitable Development of Intermittent Renewable Energies

4.3.1.1 Reminders about Electricity 136
4.3.1.2 Electricity Production from Fluctuating Renewable Resources 137
4.3.1.3 Stationary Electricity Storage 138
XX

Hydrogen, the Post-Oil Fuel

4.3.2 The Hydrogen System .. 138
4.3.2.1 Strengths and Weaknesses of Hydrogen for Coupling with Renewable Energies 138
4.3.2.2 Production of Hydrogen from Renewable Energies ... 140
4.3.2.3 Hydrogen as Energy Storage .. 141
4.3.3 Demonstration Projects ... 143
4.3.4 Conclusion ... 143

PARTIE 2

HYDROGEN PRODUCTION, DISTRIBUTION AND STORAGE TECHNOLOGIES

Chapitre 5

Hydrogen Production Technologies

5.1 Natural Gas Steam Reforming .. 147

Fabrice Giroudière (IFP Energies nouvelles)

5.1.1 Industrial Context .. 147
5.1.2 Conventional Steam Reforming Units 148
5.1.2.1 Feedstock Desulphurisation 148
5.1.2.2 Steam Reforming .. 148
5.1.2.3 Water-Gas Shift .. 150
5.1.2.4 Purification of Hydrogen .. 151
5.1.2.5 Cost Elements ... 154
5.1.3 HyGenSys®: an Innovating Steam Reforming Process 154
5.1.3.1 Standard Combined Cycle 155
5.1.3.2 Description of the Sections in the HyGenSys Process 156
5.1.3.3 Conclusion .. 159

5.2 Small Units ... 160

5.2.1 Small Hydrogen Productions from Fossil and Liquid Fuels 160

Michel Junker (ALPHEA)

5.2.1.1 Specific Aspects of Hydrogen Generation in Small Production Capacities 161
5.2.1.2 Processes Implemented ... 161
5.2.1.3 Purification of Hydrogen .. 161
5.2.1.4 Specific Technologies ... 161
5.2.1.5 Some Examples .. 163
5.2.1.6 Cost Elements ... 164
5.2.2 Small Biomass-to-Hydrogen Production Units 164

Fabrice Giroudière (IFP Energies nouvelles)

5.3 Hydrogen Production by Water Electrolysis 166

5.3.1 Description of the Alkaline Technology – Advantages and Disadvantages 166

Ross Gayey, Elizabeth Johnson, Vincenzo Ortisi, Daniel Allot-D Halluin (Pure Energy Centre)

5.3.1.1 Technical Design Challenges 167

Table of Contents

5.3.1.2 Electrolyser Manufacturers 172
5.3.1.3 Electrolyser Operating Modes 173
5.3.2 Water Electrolysis: Acid Membrane Technology 175

Fabien Augrètre (CEIIE), Pierre Millet (Université Paris-Sud 11)

5.3.2.1 Acid Membrane Water Electrolysis 178
5.3.2.2 Technological Developments 184
5.3.2.3 Limitations and Perspectives 189
5.3.2.4 Conclusion .. 194
5.3.3 High-Temperature Steam Electrolysis. Description and State of the Art 194

Pierre Baures, François Le Naour (CEA-Grenoble/LITEN)

5.3.3.1 Basic Energy Data .. 196
5.3.3.2 Elementary Components of an Anion Steam Electrolyser with Planar Technology 200
5.3.3.3 State of the Art of Current Stacks 206
5.3.3.4 Current Barriers and Conclusion 206

5.4 Other Pathways ... 208

5.4.1 Hydrogen Production by Photo(electro)lysis of Water 208

Christian Beauger, Patrick Achard (Mines ParisTech)

5.4.1.1 Definition and Interest .. 208
5.4.1.2 Fundamentals ... 209
5.4.1.3 Various Strategies .. 213
5.4.1.4 Conclusion .. 216
5.4.2 Hydrogen Production by Thermochemical Cycle 216

Édouard Freund (IFP Energies nouvelles)

5.4.3 Photobiological Production of Hydrogen: Using Microorganisms to Convert Solar Energy into Hydrogen 218

Laurent Conrac (CEA)

5.4.3.1 Photobiological Production of Hydrogen from Biomass by Purple Bacteria 219
5.4.3.2 Hydrogen Production by Oxygenic Photosynthetic Microorganisms 219
5.4.4 The Bio-inspired Approach ... 223

Vincent Artero (CEA)

5.4.4.1 The Search for New Catalysts 224
5.4.4.2 From Molecular Catalyst to Material: the Role of Nanosciences 224
5.4.4.3 Artificial Photosynthesis and Hydrogen Production: Towards Photoelectrocatalytic Systems 226

Chapitre 6

Hydrogen Distribution Technologies

François Barbier (Air Liquide)

6.1 Hydrogen Transport by Pipelines 234

6.1.1 State of the Art on Hydrogen Pipelines 234
6.1.1.1 Overview of Hydrogen Networks 234
6.1.1.2 Pipeline Characteristics ... 235
6.1.1.3 Cost of Pipelines .. 237
6.1.2 Perspectives of Evolution for Hydrogen Pipelines 238
6.1.3 Use of Existing Natural Gas Pipelines 240
6.2 Hydrogen Transport by Road ... 240
 6.2.1 Gas Transport Trucks .. 240
 6.2.1.1 Current Status .. 240
 6.2.1.2 Perspectives ... 241
 6.2.2 Cryogenic Liquid Hydrogen Trucks 242
6.3 Alternative Hydrogen Distribution Systems 243
 6.3.1 Transport by Rail and Ship .. 243
 6.3.2 Chemical Hydrogen Carriers .. 244
 6.3.3 Other Concepts ... 244
6.4 Stationary Bulk Storage of Hydrogen 245
 6.4.1 Geological Storage ... 245
 6.4.2 Buried Tanks .. 245
 6.4.2.1 Compressed Gas Tanks 246
 6.4.2.2 Liquid Hydrogen Tanks 246
6.5 Supporting Technologies ... 246
 6.5.1 Gaseous Hydrogen Compressors 246
 6.5.2 Liquid Hydrogen Pumps .. 249
 6.5.3 Hydrogen Quality Management 249
6.6 Hydrogen Refuelling Stations .. 251
 6.6.1 Refuelling Protocols ... 252
 6.6.2 Dispenser ... 253
 6.6.3 Operator Interface ... 253
 6.6.4 Development of Hydrogen Stations 254
6.7 Conclusion ... 255

Chapitre 7
Hydrogen Storage Technologies

7.1 Onboard Storage .. 259
 7.1.1 Solid Storage ... 259
 Annick Percheron-Guégan (CNRS)
 7.1.1.1 Hydrogen Reversible Storage Systems 260
 7.1.1.2 Irreversible Hydrogen Storage 272
 7.1.1.3 Technological Problems Associated with Hydrogen Storage on Solid .. 272
 7.1.1.4 Conclusion .. 274
 7.1.2 Cryogenic Storage Tanks for Hydrogen Vehicles 274
 Friedel Michel et Françoise Barbier
 7.1.2.1 Cryogenic Hydrogen Tank Technology 275
 7.1.2.2 Types of Cryogenic Tank 281
 7.1.2.3 Conclusion ... 283
 7.1.3 Compressed Hydrogen Storage 283
 Fabien Nomy (CEA)
 7.1.3.1 Choice of Outer Liner Constituent Material and Associated Manufacturing Processes 284
 7.1.3.2 Choice of Material Forming the Composite Structure and Associated Manufacturing Processes 290
7.2 Massive Hydrogen Storage ... 294
 Pierre Odru (IFP Energies nouvelles)
 7.2.1 Storage in Depleted oil Deposits 295
 7.2.2 Storage in Aquifers .. 295
 7.2.3 Storage in Salt Caverns ... 295
 7.2.4 Other Possible Forms of Massive Hydrogen Storage 296
 7.2.5 Hydrogen Specificities ... 296

PARTIE 3
HYDROGEN SAFETY

Chapitre 8
The Main Characteristics of Hydrogen Regarding Safety
 Alain Bengaouer (CEA)
 8.1 Context ... 301
 8.2 What is Hydrogen? .. 302
 8.3 A Light Gas .. 303
 8.4 A Flammable Gas .. 303
 8.5 Degradation of Metals ... 304
 8.6 Liquid Hydrogen ... 305
 8.7 Accident Scenarios ... 305
 8.8 Dispersion and Accumulation 306
 8.9 The Various Combustion Modes 307
 8.10 Tools to Assess the Consequences 308
 8.11 Risk Limitation .. 309

Chapitre 9
Experience in Industrial Use of Hydrogen
 Didier Gaston (INERIS/APAVE)
 9.1 Hydrogen: a Product Used in Numerous Industries and Numerous Applications ... 311
 9.2 Hydrogen: a Special Flammable Gas 312
 9.3 Generic Exploitation of Data from Feedback: Information to Be Considered with Caution 313
 9.4 Exploitation of Data from Space Industry Feedback: an Interesting Example .. 314
9.5 Professional Practices Compiled in Various Guides or Standards: a Mine of Confused and not Readily Accessible Information

9.6 Major Uncertainties in Assessment of Hydrogen Leaks and Consequences of an Explosion
 9.6.1 Modelling Jets of Small Gaseous Hydrogen Leaks
 9.6.2 Accumulation of Small Hydrogen Leaks in a Confined or Semi-ventilated Room
 9.6.3 Atmospheric Dispersion of Large Cryogenic Hydrogen Leaks

9.7 Conclusion

Conclusion

Appendix 1 – Scheme of a Traditional Conversion Refinery

Appendix 2 – Refining Schemes Corresponding to the Results Presented (in Ascending Complexity and Conversion Level)
HYDROGEN, THE POST-OIL FUEL?

Hydrogen, energy vector for the future? Or, on the contrary, limited to its current applications in the field of chemistry and refining for decades to come, possibly even until the end of the century? There is much controversy over this issue and two sides to the argument. Advocates of the hydrogen civilisation consider that, following a technological revolution, hydrogen will play a universal role alongside electricity as a substitute for fossil fuels, especially (but not only) in transport, leading to radical elimination of CO₂ emissions. For the sceptics, and even outspoken opponents, hydrogen will remain restricted to its current applications due to the insoluble problems inherent to its generalised use, especially in transport.

This book highlights the increasing and inevitable role of “energy” hydrogen – as opposed to chemical hydrogen – in the key sectors of transport and “clean” electricity production. The first section is dedicated to current applications of energy hydrogen, or those within reach in the not too distant future. The second section reviews the hydrogen production, distribution and storage technologies that are either commercially available or almost mature. The last section addresses the central issue of safety if hydrogen is to be used by the general public, before concluding on the short and medium term development perspectives of energy hydrogen.

This extensively documented book is intended for a wide audience including transport companies (road, air and waterway) and engine engineers, as well as all those interested in the future of transport and fuels in the post-oil world.

Édouard Freund is a former student of the École Polytechnique (1968), graduate from Imperial College (1973) and Doctor of Physical Science from the University of Paris VI (1974). He spent his entire career at IFP Energies nouvelles as Research & Development Director until 2008, taking a keen interest in hydrogen technologies from the outset.

Paul Lucchese is a former student of the École Centrale de Paris (1983) and holds a DEA in Applied Chemistry (1983). He has worked on hydrogen since 1999 at CEA, where he held the position of Director of New Energy Technologies until 2009. He is chairman of N.ERGHY, New European Research Grouping on Fuel Cells and Hydrogen, and member of the JTI HFC governing board. He also serves as French representative on hydrogen within the IEA (International Energy Agency) and at the IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy).