Contents

Preface

Part I

Chapter 1 Introduction to Frequency-Modulated Continuous-Wave Radar

1.1 Brief History

1.2 Examples of Use of FMCW Radar

1.2.1 Radio Altimeters

1.2.2 Level-Measuring Radar

1.2.3 Navigational Radar

1.2.4 Vehicle Collision Warning Systems

1.2.5 Precision Range Meter for Fixed Targets

1.2.6 Measurement of Very Small Motions

References

Chapter 2 Basic Theory of Short-Range FM Radar

2.1 Principle of Operation and Basic Block Diagram of FM Radar

2.2 Typical Block Diagram of Short-Range FM Radar

2.2.1 System with Separate Transmitting and Receiving Antennas and Nonzero Intermediate Frequency

2.2.2 Circuit with Nonzero Intermediate Frequency and Complex Frequency Modulation

2.2.3 System with a Single Transmitting-Receiving Antenna

2.2.4 Autodyne System with a Single Antenna
Fundamentals of Short-Range FM Radar

2.3 General Expressions for Transmitted, Reflected, and Converted Signals 16
2.4 General Relationships for the Converted Signal with Modulation by a Periodic Function 19
2.5 General Relations for a Converted Signal with Dual-Frequency Modulation 22
2.6 General Relations for a Converted Signal with Modulation by a Modulated Periodic Function 24
2.7 Block Diagrams of Ultrasonic SRR and Features of the Converted Signal 25

Chapter 3 Characteristics of the Converted Signal with Different Transmitter Modulations 27
3.1 Sinusoidal Modulation 27
 3.1.1 Modulation by a Single Sinusoid 27
 3.1.2 Dual Sinusoidal Modulation 31
3.2 Linear Frequency Modulation 33
 3.2.1 Modulation with an Asymmetrical Sawtooth Function 33
 3.2.2 Modulation with Non-Isosceles and Symmetrical Sawtooth Functions 39
3.3 Discrete Modulation 42
3.4 Effects of Transmitter Modulation Nonlinearity on Converted Signal Parameters 45

Chapter 4 Integrated Methods of Converted Signal Processing 49
4.1 General Description 49
4.2 Effect of Parasitic Amplitude Modulation of the Transmission on Operation of the SRR Receiver 52
 4.2.1 General Description 52
 4.2.2 Methods of Decreasing PAM Signal Effects on Receiver Operation 54
4.3 Stabilization of the Frequency Deviation 59
4.4 Frequency Processing of the Converted Signal 63
 4.4.1 Range Finding by Counting the Number of Zero Points of the Converted Signal for a Modulation Period 63
 4.4.2 Measuring of the Instantaneous Frequency 65
 4.4.3 Fixing the Instantaneous Frequency of the Converted Signal 67
 4.4.4 Use of the Frequency Deviation of the Converted Signal 68
 4.4.5 Applying Dual Sinusoidal Modulation 71
4.4.6 Single-Antenna Version with Zero Intermediate Frequency 75
4.4.7 Fixing the Frequency Deviation of the Converted Signal 76
4.5 Phase Processing of the Converted Signal 81
References 88

Chapter 5 Spectral Methods of Processing the Converted Signal 89
5.1 General Description 89
5.2 Range Resolution 93
5.3 Radar Scan of Range 99
5.4 Spectral Processing Using the Parasitic AM Signal 109
5.5 Signal Processing on Separate Components of the Converted Signal Spectrum
 5.5.1 Formation of the Discriminator Characteristic 111
 5.5.2 Phase Processing of Separate Components of the Converted Signal Spectrum 113
References 122

Part II 123

Chapter 6 Analysis of Constant Frequency Oscillators 125
6.1 Rule for Obtaining the Abbreviated Equations 126
6.2 Substantiation of the SAE Method 129
6.3 Examples of Deriving the Abbreviated Equations
 6.3.1 Single-Tuned Oscillator with Fixed Bias Voltage 133
 6.3.2 Single-Tuned Oscillator with Automatic Bias 137
6.4 General Abbreviated and Characteristic Equations of Anisochronous Oscillators
 6.4.1 Abbreviated Equations of Anisochronous Oscillators 140
 6.4.2 Stationary Modes of the Oscillator 144
 6.4.3 General Characteristic Equation of the Anisochronous Oscillator 145
 6.4.4 Condition of Self-Excitation of Oscillators with Inertial Active Elements 148
 6.4.5 Order of the Characteristic Equation and the Sign of the Factor at the Upper Derivative 149
References 150

Chapter 7 Analysis of FM Systems Using Symbolical Abbreviated Equations
7.1 Symbolical Abbreviated Equations for Controlled Self-Oscillatory Systems of Any Kind 151
Fundamentals of Short-Range FM Radar

7.2 Method of Symbolical Abbreviated Equations for FM Systems 156
7.3 Differential Equations of Some FM Systems 159
 7.3.1 Differential Equations of a Parallel Conservative LC Circuit with Variable Capacitance and an Active Two-Pole 159
 7.3.2 Differential Equations of a Parallel Dissipative LC Circuit with Variable Capacitance and an Active Two-Pole 161
7.4 Abbreviated Differential Equations of Single-Tuned Oscillators with Sinusoidal FM 162
7.5 Parasitic Amplitude Modulation in Autodynes for Various Types of Frequency Modulation 165
 7.5.1 Sine Wave Frequency Modulation 169
 7.5.2 Binary Frequency Modulation 170
 7.5.3 Frequency Modulation by an Asymmetrical Sawtooth 170
 7.5.4 Frequency Modulation with a Symmetrical Sawtooth 171
References 172

Chapter 8 Output Voltage of a Frequency-Controlled Oscillator 173
 8.1 Change of Output Voltage for Oscillators Tuned Discretely in Time 174
 8.2 Parasitic Amplitude Modulation of Oscillations in Ideal Single-Tuned Circuits with Modulation of Their Natural Frequencies 180
 8.3 Parasitic Amplitude Modulation of Output Voltage in Single-Tuned Oscillators with Frequency Modulation 183
 8.4 Use of a Varicap as the Frequency Controller 193
References 200

Chapter 9 Nonlinearity and Linearization in Varactor Control of FM Oscillators 201
 9.1 Nonlinearity of Frequency Dependence of Single-Tuned Oscillators on Control Voltage of the Varactor with Large Frequency Changes 203
 9.2 Nonlinear Distortions with Frequency Modulation Using Varactors 209
 9.2.1 Nonlinear Distortions for Capacitor Coupling of the Varactor to the Oscillator Circuit 210
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.2 Nonlinear Distortions for Autoinductive Coupling of the Varactor to the Oscillator Circuit</td>
<td>212</td>
</tr>
<tr>
<td>9.2.3 Nonlinear Distortions in the Case of a Single-Tuned Oscillator Circuit with Allowance for RF Voltage on the Varactor</td>
<td>213</td>
</tr>
<tr>
<td>9.3 Linearization of Dependence of Oscillator Frequency on Control Voltage</td>
<td>215</td>
</tr>
<tr>
<td>9.4 Calculation of Diode-Resistive Correction Circuits</td>
<td>221</td>
</tr>
<tr>
<td>9.5 Decreasing the Nonlinear Distortion of the FM Signal with a Correcting Signal</td>
<td>223</td>
</tr>
<tr>
<td>Chapter 10 Theory of the Single-Tuned Transistor Autodyne and Optimization of Its Modes</td>
<td></td>
</tr>
<tr>
<td>10.1 Abbreviated Differential Equations for the Single-Tuned Transistor Autodyne</td>
<td>227</td>
</tr>
<tr>
<td>10.2 Linearized Differential Equations of Autodynes for Small Reflected Signals</td>
<td>228</td>
</tr>
<tr>
<td>10.3 Equivalent Circuits of Autodynes for Small Reflected Signals</td>
<td>231</td>
</tr>
<tr>
<td>10.4 The Form and Spectrum of the Output Signal of a Single-Tuned Transistor Autodyne</td>
<td>233</td>
</tr>
<tr>
<td>10.5 Form and Spectrum of the High-Frequency Signal from an FM Transistor Autodyne</td>
<td>234</td>
</tr>
<tr>
<td>10.6 Transfer Factors of an Autodyne on a Voltage and a Current and Mode Optimization</td>
<td>239</td>
</tr>
<tr>
<td>10.6.1 Analysis for Low Frequencies for a Particular Transistor</td>
<td>242</td>
</tr>
<tr>
<td>10.6.2 The High-Frequency Case</td>
<td>246</td>
</tr>
<tr>
<td>10.6.3 Choice of Mode with High Autodyne Sensitivity</td>
<td>247</td>
</tr>
<tr>
<td>References</td>
<td>248</td>
</tr>
<tr>
<td>Chapter 11 Autodyne Modes of Transistor Oscillators with Strong Interference</td>
<td></td>
</tr>
<tr>
<td>11.1 The Common Properties of Autodyne Modes of the Single-Tuned Synchronized Oscillator</td>
<td>249</td>
</tr>
<tr>
<td>11.1.1 Abbreviated Equations for the Synchronized Oscillator</td>
<td>250</td>
</tr>
<tr>
<td>11.1.2 Abbreviated Equations in Normalized Parameters</td>
<td>252</td>
</tr>
<tr>
<td>11.1.3 Steady-State Synchronous Modes</td>
<td>255</td>
</tr>
<tr>
<td>11.1.4 Transients at Synchronism</td>
<td>257</td>
</tr>
<tr>
<td>11.1.5 Bifurcational Diagrams of a Transistor Autodyne</td>
<td>260</td>
</tr>
</tbody>
</table>
11.2 Transfer Factor of an Autodyne Subject to Synchronous Jamming 263
11.3 Bifurcations of Periodic Variations in the Synchronized Autodyne 269
References 273
List of Symbols 275
About the Authors 281
Index 285