## Contents

Preface \hfill xv
Acknowledgments \hfill xvii

### CHAPTER 1

Introduction \hfill 1
1.1 Introduction \hfill 1
1.2 Condensed GPS Program History \hfill 2
1.3 GPS Overview
  1.3.1 PPS \hfill 4
  1.3.2 SPS \hfill 4
1.4 GPS Modernization Program \hfill 5
1.5 GALILEO Satellite System \hfill 6
1.6 Russian GLONASS System \hfill 7
1.7 Chinese BeiDou System \hfill 8
1.8 Augmentations \hfill 10
1.9 Markets and Applications
  1.9.1 Land \hfill 11
  1.9.2 Aviation \hfill 12
  1.9.3 Space Guidance \hfill 13
  1.9.4 Maritime \hfill 14
1.10 Organization of the Book \hfill 14
References \hfill 19

### CHAPTER 2

Fundamentals of Satellite Navigation \hfill 21
2.1 Concept of Ranging Using TOA Measurements \hfill 21
  2.1.1 Two-Dimensional Position Determination \hfill 21
  2.1.2 Principle of Position Determination Via Satellite-Generated Ranging Signals \hfill 24
2.2 Reference Coordinate Systems \hfill 26
  2.2.1 Earth-Centered Inertial Coordinate System \hfill 27
  2.2.2 Earth-Centered Earth-Fixed Coordinate System \hfill 28
  2.2.3 World Geodetic System \hfill 29
  2.2.4 Height Coordinates and the Geoid \hfill 32
2.3 Fundamentals of Satellite Orbits \hfill 34
  2.3.1 Orbital Mechanics \hfill 34
  2.3.2 Constellation Design \hfill 43
2.4 Position Determination Using PRN Codes
  2.4.1 Determining Satellite-to-User Range \hfill 51
  2.4.2 Calculation of User Position \hfill 54
2.5 Obtaining User Velocity

2.6 Time and GPS
   2.6.1 UTC Generation
   2.6.2 GPS System Time
   2.6.3 Receiver Computation of UTC (USNO)

References

CHAPTER 3

GPS System Segments
3.1 Overview of the GPS System
   3.1.1 Space Segment Overview
   3.1.2 Control Segment (CS) Overview
   3.1.3 User Segment Overview
3.2 Space Segment Description
   3.2.1 GPS Satellite Constellation Description
   3.2.2 Constellation Design Guidelines
   3.2.3 Space Segment Phased Development
3.3 Control Segment
   3.3.1 Current Configuration
   3.3.2 CS Planned Upgrades
3.4 User Segment
   3.4.1 GPS Set Characteristics
   3.4.2 GPS Receiver Selection

References

CHAPTER 4

GPS Satellite Signal Characteristics
4.1 Overview
4.2 Modulations for Satellite Navigation
   4.2.1 Modulation Types
   4.2.2 Multiplexing Techniques
   4.2.3 Signal Models and Characteristics
4.3 Legacy GPS Signals
   4.3.1 Frequencies and Modulation Format
   4.3.2 Power Levels
   4.3.3 Autocorrelation Functions and Power Spectral Densities
   4.3.4 Cross-Correlation Functions and CDMA Performance
4.4 Navigation Message Format
4.5 Modernized GPS Signals
   4.5.1 L2 Civil Signal
   4.5.2 L5
   4.5.3 M Code
   4.5.4 L1 Civil Signal
4.6 Summary

References
## CHAPTER 5
Satellite Signal Acquisition, Tracking, and Data Demodulation

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
</tr>
<tr>
<td>GPS Receiver Code and Carrier Tracking</td>
</tr>
<tr>
<td>5.2.1 Predetection Integration</td>
</tr>
<tr>
<td>5.2.2 Baseband Signal Processing</td>
</tr>
<tr>
<td>5.2.3 Digital Frequency Synthesis</td>
</tr>
<tr>
<td>5.2.4 Carrier Aiding of Code Loop</td>
</tr>
<tr>
<td>5.2.5 External Aiding</td>
</tr>
<tr>
<td>Carrier Tracking Loops</td>
</tr>
<tr>
<td>5.3.1 Phase Lock Loops</td>
</tr>
<tr>
<td>5.3.2 Costas Loops</td>
</tr>
<tr>
<td>5.3.3 Frequency Lock Loops</td>
</tr>
<tr>
<td>Code Tracking Loops</td>
</tr>
<tr>
<td>Loop Filters</td>
</tr>
<tr>
<td>Measurement Errors and Tracking Thresholds</td>
</tr>
<tr>
<td>5.6.1 PLL Tracking Loop Measurement Errors</td>
</tr>
<tr>
<td>5.6.2 FLL Tracking Loop Measurement Errors</td>
</tr>
<tr>
<td>5.6.3 C/A and P(Y) Code Tracking Loop Measurement Errors</td>
</tr>
<tr>
<td>5.6.4 Modernized GPS M Code Tracking Loop Measurement Errors</td>
</tr>
<tr>
<td>Formation of Pseudorange, Delta Pseudorange, and Integrated Doppler</td>
</tr>
<tr>
<td>5.7.1 Pseudorange</td>
</tr>
<tr>
<td>5.7.2 Delta Pseudorange</td>
</tr>
<tr>
<td>5.7.3 Integrated Doppler</td>
</tr>
<tr>
<td>Signal Acquisition</td>
</tr>
<tr>
<td>5.8.1 Tong Search Detector</td>
</tr>
<tr>
<td>5.8.2 M of N Search Detector</td>
</tr>
<tr>
<td>5.8.3 Direct Acquisition of GPS Military Signals</td>
</tr>
<tr>
<td>Sequence of Initial Receiver Operations</td>
</tr>
<tr>
<td>Data Demodulation</td>
</tr>
<tr>
<td>Special Baseband Functions</td>
</tr>
<tr>
<td>5.11.1 Signal-to-Noise Power Ratio Meter</td>
</tr>
<tr>
<td>5.11.2 Phase Lock Detector with Optimistic and Pessimistic Decisions</td>
</tr>
<tr>
<td>5.11.3 False Frequency Lock and False Phase Lock Detector</td>
</tr>
<tr>
<td>Use of Digital Processing</td>
</tr>
<tr>
<td>Considerations for Indoor Applications</td>
</tr>
<tr>
<td>Codeless and Semicodeless Processing</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

## CHAPTER 6
Interference, Multipath, and Scintillation

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
</tr>
<tr>
<td>Radio Frequency Interference</td>
</tr>
<tr>
<td>6.2.1 Types and Sources of RF Interference</td>
</tr>
<tr>
<td>6.2.2 Effects of RF Interference on Receiver Performance</td>
</tr>
<tr>
<td>6.2.3 Interference Mitigation</td>
</tr>
<tr>
<td>Multipath</td>
</tr>
</tbody>
</table>
6.3.1 Multipath Characteristics and Models 281
6.3.2 Effects of Multipath on Receiver Performance 285
6.3.3 Multipath Mitigation 292
6.4 Ionospheric Scintillation 295
References 297

CHAPTER 7
Performance of Stand-Alone GPS 301
7.1 Introduction 301
7.2 Measurement Errors 302
7.2.1 Satellite Clock Error 304
7.2.2 Ephemeris Error 305
7.2.3 Relativistic Effects 306
7.2.4 Atmospheric Effects 308
7.2.5 Receiver Noise and Resolution 319
7.2.6 Multipath and Shadowing Effects 319
7.2.7 Hardware Bias Errors 320
7.2.8 Pseudorange Error Budgets 321
7.3 PVT Estimation Concepts 322
7.3.1 Satellite Geometry and Dilution of Precision in GPS 322
7.3.2 Accuracy Metrics 328
7.3.3 Weighted Least Squares (WLS) 332
7.3.4 Additional State Variables 333
7.3.5 Kalman Filtering 334
7.4 GPS Availability 334
7.4.1 Predicted GPS Availability Using the Nominal 24-Satellite GPS Constellation 335
7.4.2 Effects of Satellite Outages on GPS Availability 337
7.5 GPS Integrity 343
7.5.1 Discussion of Criticality 345
7.5.2 Sources of Integrity Anomalies 345
7.5.3 Integrity Enhancement Techniques 346
7.6 Continuity 360
7.7 Measured Performance 361
References 375

CHAPTER 8
Differential GPS 379
8.1 Introduction 379
8.2 Spatial and Time Correlation Characteristics of GPS Errors 381
8.2.1 Satellite Clock Errors 381
8.2.2 Ephemeris Errors 382
8.2.3 Tropospheric Errors 384
8.2.4 Ionospheric Errors 387
8.2.5 Receiver Noise and Multipath 390
8.3 Code-Based Techniques 391
8.3.1 Local-Area DGPS 391
8.3.2 Regional-Area DGPS 394
8.3.3 Wide-Area DGPS 395
8.4 Carrier-Based Techniques 397
  8.4.1 Precise Baseline Determination in Real Time 398
  8.4.2 Static Application 418
  8.4.3 Airborne Application 420
  8.4.4 Attitude Determination 423
8.5 Message Formats 425
  8.5.1 Version 2.3 425
  8.5.2 Version 3.0 428
8.6 Examples 429
  8.6.1 Code Based 429
  8.6.2 Carrier Based 450
References 454

CHAPTER 9
Integration of GPS with Other Sensors and Network Assistance 459
9.1 Overview 459
9.2 GPS/Inertial Integration 460
  9.2.1 GPS Receiver Performance Issues 460
  9.2.2 Inertial Sensor Performance Issues 464
  9.2.3 The Kalman Filter 466
  9.2.4 GPSI Integration Methods 470
  9.2.5 Reliability and Integrity 488
  9.2.6 Integration with CRPA 489
9.3 Sensor Integration in Land Vehicle Systems 491
  9.3.1 Introduction 491
  9.3.2 Review of Available Sensor Technology 496
  9.3.3 Sensor Integration Principles 515
9.4 Network Assistance 522
  9.4.1 Historical Perspective of Assisted GPS 526
  9.4.2 Requirements of the FCC Mandate 528
  9.4.3 Total Uncertainty Search Space 535
  9.4.4 GPS Receiver Integration in Cellular Phones—Assistance Data from Handsets 540
  9.4.5 Types of Network Assistance 543
References 554

CHAPTER 10
GALILEO 559
10.1 GALILEO Program Objectives 559
10.2 GALILEO Services and Performance 559
  10.2.1 Open Service (OS) 560
  10.2.2 Commercial Service (CS) 562
  10.2.3 Safety of Life (SOL) Service 562
  10.2.4 Public Regulated Service (PRS) 562
  10.2.5 Support to Search and Rescue (SAR) Service 563
10.3 GALILEO Frequency Plan and Signal Design 563
  10.3.1 Frequencies and Signals 563
  10.3.2 Modulation Schemes 565
  10.3.3 SAR Signal Plan 576
10.4 Interoperability Between GPS and GALILEO 577
  10.4.1 Signal in Space 577
  10.4.2 Geodetic Coordinate Reference Frame 578
  10.4.3 Time Reference Frame 578
10.5 System Architecture 579
  10.5.1 Space Segment 581
  10.5.2 Ground Segment 585
10.6 GALILEO SAR Architecture 591
10.7 GALILEO Development Plan 592
References 594

CHAPTER 11
Other Satellite Navigation Systems 595
11.1 The Russian GLONASS System 595
  11.1.1 Introduction 595
  11.1.2 Program Overview 595
  11.1.3 Organizational Structure 597
  11.1.4 Constellation and Orbit 597
  11.1.5 Spacecraft Description 599
  11.1.6 Ground Support 602
  11.1.7 User Equipment 604
  11.1.8 Reference Systems 605
  11.1.9 GLONASS Signal Characteristics 606
  11.1.10 System Accuracy 611
  11.1.11 Future GLONASS Development 612
  11.1.12 Other GLONASS Information Sources 614
11.2 The Chinese BeiDou Satellite Navigation System 615
  11.2.1 Introduction 615
  11.2.2 Program History 616
  11.2.3 Organization Structure 617
  11.2.4 Constellation and Orbit 617
  11.2.5 Spacecraft 617
  11.2.6 RDSS Service Infrastructure 618
  11.2.7 RDSS Navigation Services 621
  11.2.8 RDSS Navigation Signals 622
  11.2.9 System Coverage and Accuracy 623
  11.2.10 Future Developments 623
11.3 The Japanese QZSS Program 625
  11.3.1 Introduction 625
  11.3.2 Program Overview 625
  11.3.3 Organizational Structure 626
  11.3.4 Constellation and Orbit 626
  11.3.5 Spacecraft Development 627
CHAPTER 12

GNSS Markets and Applications 635

12.1 GNSS: A Complex Market Based on Enabling Technologies 635
   12.1.1 Market Scope, Segmentation, and Value 638
   12.1.2 Unique Aspects of GNSS Market 639
   12.1.3 Market Limitations, Competitive Systems, and Policy 640

12.2 Civil Navigation Applications of GNSS 641
   12.2.1 Marine Navigation 642
   12.2.2 Air Navigation 645
   12.2.3 Land Navigation 646

12.3 GNSS in Surveying, Mapping, and Geographical Information Systems 647
   12.3.1 Surveying 648
   12.3.2 Mapping 648
   12.3.3 GIS 649

12.4 Recreational Markets for GNSS-Based Products 650

12.5 GNSS Time Transfer 650

12.6 Differential Applications and Services 650
   12.6.1 Precision Approach Aircraft Landing Systems 651
   12.6.2 Other Differential Systems 651
   12.6.3 Attitude Determination Systems 652

12.7 GNSS and Telematics and LBS 652

12.8 Creative Uses for GNSS 654

12.9 Government and Military Applications 654
   12.9.1 Military User Equipment—Aviation, Shipboard, and Land 655
   12.9.2 Autonomous Receivers—Smart Weapons 656
   12.9.3 Space Applications 657
   12.9.4 Other Government Applications 657

12.10 User Equipment Needs for Specific Markets 657

12.11 Financial Projections for the GNSS Industry 660

References 661

APPENDIX A

Least Squares and Weighted Least Squares Estimates 663

Reference 664

APPENDIX B

Stability Measures for Frequency Sources 665

B.1 Introduction 665