PEM Fuel Cell Testing and Diagnosis

Dr. Jianlu Zhang
Dr. Huamin Zhang
Dr. Jinfeng Wu
Dr. Jiujun Zhang
## Contents

Preface ix  
Biography xi  

1. PEM Fuel Cell Fundamentals 1  
   1.1. Introduction 2  
   1.2. Electrochemical Reaction Thermodynamics in a H₂/Air Fuel Cell 3  
   1.3. Electrochemical Reaction Kinetics in a H₂/Air Fuel Cell 6  
   1.4. PEM Fuel Cell Current-Voltage Expression 22  
   1.5. Fuel Cell Components 24  
   1.6. Single Cell and Fuel Cell Stack Operation 32  
   1.7. Fuel Cell Performance 33  
   1.8. Fuel Cell Operating Conditions 36  
   1.9. Chapter Summary 39  
   References 40  

2. Design and Fabrication of PEM Fuel Cell MEA, Single Cell, and Stack 43  
   2.1. Introduction 44  
   2.2. MEA Design and Assembly 44  
   2.3. Typical Examples for MEA Fabrication 59  
   2.4. Flow Field Design 70  
   2.5. Sealing Design 73  
   2.6. Single Cell Design and Assembly 74  
   2.7. Stack Design and Assembly 75  
   2.8. Chapter Summary 77  
   References 77  

3. Techniques for PEM Fuel Cell Testing and Diagnosis 81  
   3.1. Introduction 81  
   3.2. Techniques for PEM Fuel Cell Testing 82  
   3.3. Techniques for PEM Fuel Cell Diagnosis 85  
   3.4. Chapter Summary 116  
   References 117  

4. The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 121  
   4.1. Introduction 121  
   4.2. Anode H₂ Oxidation on Pt Catalysts 122
4.3. Cathode O$_2$ Reduction on Pt Catalyst 122
4.4. Polarization Curve Analysis Using EIS 124
4.5. Temperature Effects on PEM Fuel Cell Kinetics 125
4.6. The Effect of Temperature on the Overall Performance of a PEM Fuel Cell 136
4.7. Chapter Summary 138

References 139

5. Membrane/Ionomer Proton Conductivity Measurements 143
5.1. Introduction 143
5.2. Proton Conduction Mechanisms 144
5.3. Methods for Measuring Conductivity 149
5.4. Temperature Effect on Proton Conductivity 162
5.5. Relative Humidity/Water Content Effect on Proton Conductivity 165
5.6. Chapter Summary 168

References 168

6. Hydrogen Crossover 171
6.1. Introduction 171
6.2. Hydrogen Crossover Theory (Model) 172
6.3. Impacts of Hydrogen Crossover on Fuel Cell Performance and Durability 176
6.4. Techniques for Hydrogen Crossover Measurements 177
6.5. Dependence of Hydrogen Crossover on $T$, $RH$, and $P$ 181
6.6. Summary 184

References 185

7. Fuel Cell Open Circuit Voltage 187
7.1. Open Circuit Voltage Theory 187
7.2. Measured OCV 188
7.3. Factors affecting OCV 190
7.4. Applications of OCV Measurement 196
7.5. Chapter Summary 199

References 199

8. Relative Humidity (RH) Effects on PEM Fuel Cells 201
8.1. Introduction 201
8.2. Definition of Relative Humidity 202
8.3. Humidification Methods in PEM Fuel Cells 207
8.4. Effect of RH on Fuel Cell Reaction Kinetics 208
8.5. Effect of RH on Mass Transfer 216
8.6. Effect of RH on Membrane Resistance 218
8.7. Effect of RH on PEM Fuel Cell Performance 220
8.8. Chapter Summary 222

References 222
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Pressure Effects on PEM Fuel Cell Performance</td>
<td>225</td>
</tr>
<tr>
<td>9.1.</td>
<td>Introduction</td>
<td>225</td>
</tr>
<tr>
<td>9.2.</td>
<td>Operating Pressure in PEM Fuel Cells</td>
<td>226</td>
</tr>
<tr>
<td>9.3.</td>
<td>Theoretical and Semiempirical Analysis of Backpressure Effects on Fuel Cell Performance</td>
<td>229</td>
</tr>
<tr>
<td>9.4.</td>
<td>Chapter Summary</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>240</td>
</tr>
<tr>
<td>10.</td>
<td>High-Temperature PEM Fuel Cells</td>
<td>243</td>
</tr>
<tr>
<td>10.1.</td>
<td>Introduction</td>
<td>244</td>
</tr>
<tr>
<td>10.2.</td>
<td>Benefits of HT-PEM Fuel Cells</td>
<td>244</td>
</tr>
<tr>
<td>10.3.</td>
<td>Membrane Development for HT-PEM Fuel Cells</td>
<td>249</td>
</tr>
<tr>
<td>10.4.</td>
<td>Catalyst Development for HT-PEM Fuel Cells</td>
<td>255</td>
</tr>
<tr>
<td>10.5.</td>
<td>Design of HT-PEM Fuel Cells</td>
<td>262</td>
</tr>
<tr>
<td>10.6.</td>
<td>Testing and Diagnosis of HT-PEM Fuel Cells</td>
<td>269</td>
</tr>
<tr>
<td>10.7.</td>
<td>Challenges of HT-PEM Fuel Cells</td>
<td>276</td>
</tr>
<tr>
<td>10.8.</td>
<td>Chapter Summary</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>280</td>
</tr>
<tr>
<td>11.</td>
<td>Fuel Cell Degradation and Failure Analysis</td>
<td>283</td>
</tr>
<tr>
<td>11.1.</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>11.2.</td>
<td>Failure Modes Induced by Fuel Cell Operation</td>
<td>284</td>
</tr>
<tr>
<td>11.3.</td>
<td>Major Failure Modes of Different Components of PEM Fuel Cells</td>
<td>287</td>
</tr>
<tr>
<td>11.4.</td>
<td>Accelerated Stress Test Methods and Protocols</td>
<td>330</td>
</tr>
<tr>
<td>11.5.</td>
<td>Chapter Summary</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>12.1.</td>
<td>Introduction</td>
<td>338</td>
</tr>
<tr>
<td>12.2.</td>
<td>Conventional Three-Electrode Half-Cell</td>
<td>338</td>
</tr>
<tr>
<td>12.3.</td>
<td>Half-Cell Design to Mimic Fuel Cell Electrode Situation for Liquid Fuel Oxidation Reaction</td>
<td>349</td>
</tr>
<tr>
<td>12.4.</td>
<td>Half-Cell Design to Mimic the Fuel Cell Electrode Situation for the ORR and HOR</td>
<td>356</td>
</tr>
<tr>
<td>12.5.</td>
<td>Chapter Summary</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>360</td>
</tr>
</tbody>
</table>

Acronyms and Abbreviations

Index