Contents

Preface xi
Acknowledgements xiii
Disclaimer xiv

1 Introduction 1
 1.1 Objectives of Bonded Repairs and an Overview of the Repair Process 1
 1.1.1 Structural assessment 3
 1.1.2 Repair design 3
 1.1.3 Installation of the repair 7
 1.2 Objectives of This Book 8
 1.3 Review of Past and Current Work on Design and Analysis of Bonded Repair 8
 1.4 Basic Elements of Fracture Mechanics Theory 10

2 Theory of Bonded Doublers and Bonded Joints 16
 2.1 Introduction 16
 2.2 Stress Analysis of Two-Sided Doublers and Double-Strap Joints 17
 2.2.1 Elastic analysis of two-sided doublers and double-strap joints 17
 2.2.2 Elastic-plastic analysis of two-sided doublers and double-strap joints 23
 2.2.3 Peel stresses in two-sided doublers and double-strap joints 28
 2.3 Stress Analysis of One-Sided Bonded Double and Single-Strap Joints 31
 2.3.1 Stage I: Solution for bending moment at ends and middle of overlap 33
 2.3.2 Stage II: Solution for induced adhesive peel stresses 38
 2.3.3 Stage III: Solution for induced adhesive shear stresses 45
 2.4 Consideration of Other Important Effects in Bonded Doublers and Joints 50
 2.4.1 Stress-free condition at the adhesive ends 51
 2.4.2 Corner singularity 53
 2.4.3 Stress concentration in adherends 59
 2.4.4 Triaxial stresses and plastic yielding 62
 2.5 Failure Criteria for Bonded Doublers and Joints 65
 2.6 Summary 68

v
3 Fundamental Concept of Crack Patching

3.1 Introduction 69
3.2 Formulation and Notation 71
3.3 Symmetric or Fully Supported One-Sided Repairs
3.3.1 Stage I: Load attraction by patch 73
3.3.2 Stage II: Stress intensity factor 80
3.3.3 The effect of plastic adhesive 82
3.3.4 The effect of finite crack size 83
3.3.5 The effect of mixed mode loading 86
3.4 One-Sided Repairs 87
3.5 Thermal Stresses 92
3.6 Summary 94

4 Mathematical Theory of Supported One-Sided Crack Patching or Two-Sided Crack Patching

4.1 Introduction 95
4.2 Stage I: Load Attraction
4.2.1 Equivalent inclusion method 97
4.2.2 Inclusion problem with polynomial eigenstrains 100
4.2.3 Solution of the load attraction problem 107
4.2.4 Load attraction with thermal effects 110
4.3 Stage II: Fracture Analysis
4.3.1 Cracked sheet displacements and stresses 115
4.3.2 Composite patch displacements and stresses 122
4.3.3 Stress intensity factor evaluation 130
4.4 Numerical Illustrations 131
4.5 Thermal Constraints 138
4.6 Summary 145

5 Approximate Theory of Unsupported One-Sided Crack Patching

5.1 Introduction 146
5.2 Stage I: Geometrically Linear Analysis
5.2.1 Inclusion with constant eigencurvature 147
5.2.2 Geometrically linear analysis of polygonal patch 152
5.3 Geometrically Nonlinear Analysis of Stage I
5.3.1 Thermal stresses in polygonal patch 159
5.3.2 Patch spanning across the entire plate’s width under purely mechanical loading 162
5.3.3 Polygonal patch under combined thermo-mechanical loading 176
5.4 Stage II: Fracture Analysis Using Crack-bridging Model
5.4.1 Determination of spring constants 189
5.4.2 Fracture analysis by crack-bridging model 197
5.4.3 Numerical solutions of integral equations 201
5.4.4 Illustrative examples 205
9.2.1 Analysis method for a repair subjected only to mechanical loads 301
9.2.2 Analysis method for a repair subjected to thermo-mechanical loads 304

9.3 Design Criteria 310
9.3.1 Design criteria for cracked skin 311
9.3.2 Design criteria for patch 312
9.3.3 Design criteria for adhesive 313

9.4 Material Selection 314
9.4.1 Patch materials 314
9.4.2 Adhesive materials 315

9.5 Preliminary Design Procedure 320
9.5.1 Design procedure for a repair subjected only to mechanical loads 323
9.5.2 Design procedure for a repair subjected to thermo-mechanical loads 325

9.6 An Illustrative Example Using Design Process 332
9.6.1 Loading conditions 333
9.6.2 Design parameters 333

9.7 Summary 335

10 A Preliminary Design Approach for Corrosion Repairs 336
10.1 Introduction 336
10.2 Basic Analysis Methods Used in the Preliminary Design Approach 337
10.2.1 Analysis method for a repair subjected only to mechanical loads 337
10.2.2 Analysis method for a repair subjected to thermo-mechanical loads 340

10.3 Design Criteria 345
10.3.1 Design criteria for corroded skin or substrate 345
10.3.2 Design criteria for patch 345
10.3.3 Design criteria for adhesive 346

10.4 Preliminary Design Procedure 346
10.5 Summary 348

11 Experimental Verifications of Analytical Methods 349
11.1 Introduction 349
11.2 Fatigue Crack Growth Tests and Method Validation 350
11.2.1 Fatigue crack growth tests 350
11.2.2 Characterization of fatigue crack growth in one-sided and two-sided repairs 351
11.2.3 Fatigue crack growth analysis 360
11.2.4 Comparison between analytical predictions and test results 362
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Load Attraction Tests and Method Validation</td>
<td>374</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Load attraction tests</td>
<td>374</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Comparison between analytical prediction and test results</td>
<td>376</td>
</tr>
<tr>
<td>11.4</td>
<td>Summary</td>
<td>377</td>
</tr>
<tr>
<td>12</td>
<td>Repair of Sonic Fatigue</td>
<td>382</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>382</td>
</tr>
<tr>
<td>12.2</td>
<td>Structural Response to Acoustic Loading</td>
<td>386</td>
</tr>
<tr>
<td>12.3</td>
<td>Analysis of Damped Repairs</td>
<td>387</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Dynamic analysis of layered beams</td>
<td>387</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Influence of structural damping</td>
<td>388</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Static and dynamic responses of damped repair</td>
<td>390</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Stresses and stress intensity factors in the repaired skin</td>
<td>391</td>
</tr>
<tr>
<td>12.4</td>
<td>Fatigue Crack Growth Analysis</td>
<td>393</td>
</tr>
<tr>
<td>12.5</td>
<td>Optimization of Damped Repairs</td>
<td>395</td>
</tr>
<tr>
<td>12.6</td>
<td>An Illustrative Example</td>
<td>395</td>
</tr>
<tr>
<td>13</td>
<td>Repair Analysis Methods Accounting for Secondary Effects</td>
<td>402</td>
</tr>
<tr>
<td>13.1</td>
<td>Effect of Tapering on Load Attraction of Bonded Patches</td>
<td>402</td>
</tr>
<tr>
<td>13.2</td>
<td>Effect of Patches in Proximity on Load Attraction</td>
<td>406</td>
</tr>
<tr>
<td>13.3</td>
<td>Effect of Adherend Shear Deformation on Repair Efficiency</td>
<td>412</td>
</tr>
<tr>
<td>14</td>
<td>Concluding Remarks</td>
<td>419</td>
</tr>
<tr>
<td>Appendix</td>
<td>Introduction to CRAS Software</td>
<td>421</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>442</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>456</td>
</tr>
</tbody>
</table>