Contents

Preface xi
Acknowledgments xv
List of Tables xvii
Nomenclature: organizations xix
Nomenclature: acronyms xx
Nomenclature: main symbols xxii
Nomenclature: Greek symbols xxv
Nomenclature: subscripts/superscripts xxvi
Supplements to the text xxvii

Part I Fixed-Wing Aircraft Performance

1 Introduction 3
1.1 Physical units used 4
1.2 Performance parameters 5
1.3 Performance optimization 7
1.4 Certificate of Airworthiness 7
1.5 Upgrading of aircraft performance 8
1.6 Mission profiles 9
Problems 13

2 The aircraft and its environment 15
2.1 General aircraft model 15
2.2 Reference systems 17
2.3 Forces on the aircraft 20
2.4 Moments of inertia 21
2.5 Flight dynamics equations 22
2.6 The International Standard Atmosphere 23
2.7 Non-standard conditions 28
Problems 30

3 Weight performance 33
3.1 The aircraft’s weight 33
3.2 Definition of weights 40
3.3 Weight estimation 42
3.4 Weight management 42
3.5 Range/payload diagram 44
3.6 Direct Operating Costs 46
Problems 47

4 Aerodynamic performance 49
4.1 Aerodynamic forces 49
4.2 Lift equation 51
4.3 Vortex lift 52
4.4 High-lift systems 55
4.5 Drag equation 57
4.6 Glide ratio 61
4.7 Glide ratio at transonic and supersonic speed 63
4.8 Practical estimation of the drag coefficient 65
4.9 Compressibility effects 66
4.10 Transonic drag rise 67
4.11 Lift and transonic buffet 68
4.12 Aero-thermodynamic heating 69
4.13 Aerodynamic penetration and radius 71
4.14 Aircraft vortex wakes 72
4.15 Aerodynamics and performance 74
Problems 75

5 Engine performance 77
5.1 Gas turbine engines 77
5.2 Internal combustion engines 81
5.3 Engine flight envelopes 83
5.4 Power and thrust definitions 84
5.5 Generalized engine performance 86
5.6 Fuel flow 88
5.7 Propulsive efficiency 93
5.8 Thrust characteristics 94
5.9 Propeller characteristics 95
Problems 108

6 Flight envelopes 111
6.1 General definitions 111
6.2 Aircraft speed range 112
6.3 Definition of speeds 113
6.4 Steady state level flight 117
6.5 Speed in level flight 117
6.6 Absolute ceiling of jet aircraft 119
6.7 Absolute ceiling of propeller aircraft 119
6.8 Optimal speeds for level flight 121
6.9 General flight envelopes 124
6.10 Limiting factors on flight envelopes 126
6.11 Dash speed of supersonic aircraft 128
6.12 Absolute ceiling of supersonic aircraft 131
6.13 Supersonic acceleration 131
Problems 135

7 Take-off and landing 137
7.1 Definition of terminal phases 137
7.2 Conventional take-off 139
7.3 Ground run of jet aircraft 141
7.4 Solutions of the take-off equation 143
7.5 Rotation and initial climb 148
7.6 Take-off with one engine inoperative 150
7.7 Calculation of the balanced field length 151
7.8 Ground run of propeller aircraft 153
7.9 WAT charts 154
7.10 Missed take-off 155
7.11 Final approach and landing 156
7.12 Landing run 157
7.13 Effects of the wind 161
7.14 Ground maneuvering 161
Problems 161

8 Climb and gliding 165
8.1 Governing equations 165
8.2 Rate of climb 166
8.3 Steady climb of propeller airplane 167
8.4 Climb of jet airplane 175
8.5 Polar diagram for rate of climb 179
8.6 Energy methods 181
8.7 Specific excess power diagrams 183
8.8 Differential excess power plots 184
8.9 Minimum problems with energy method 186
8.10 Steady state gliding 190
8.11 General gliding flight 194
8.12 Maximum glide range with energy method 196
8.13 Minimum flight paths 198
8.14 Additional research on aircraft climb 201
Problems 202

9 Cruise performance 205
9.1 Importance of the cruise flight 205
9.2 General definitions 206
9.3 Point performance 206
9.4 The Breguet range equation 216
9.5 Subsonic cruise of jet aircraft 218
9.6 Mission fuel 224
9.7 Cruise with intermediate stop 230
9.8 Aircraft selection 232
Contents

9.9 Supersonic cruise 233
9.10 Cruise range of propeller aircraft 237
9.11 Endurance 238
9.12 Effect of weight on cruise range 239
9.13 Effect of the wind on cruise range 239
9.14 Additional research on aircraft cruise 241
9.15 Formation flight 241
Problems 248

10 Maneuver performance 251
10.1 Banked level turns 251
10.2 Banked turn at constant thrust 253
10.3 Power requirements 255
10.4 Effect of weight on turn radius 256
10.5 Maneuver envelope: n–V diagram 257
10.6 Turn rates 259
10.7 Sustainable g-loads 262
10.8 Unpowered turn 264
10.9 Soaring flight 265
10.10 Roll performance 271
10.11 Aircraft control under thrust asymmetry 283
10.12 Pull-up maneuver and the loop 287
10.13 Zero-gravity atmospheric flight 289
10.14 Flight path to a moving target 295
Problems 297

Part II Rotary-Wing Aircraft Performance

11 Rotorcraft performance 301
11.1 Fundamentals 301
11.2 Helicopter configurations 302
11.3 Mission profiles 305
11.4 Flight envelopes 306
11.5 Definitions and reference systems 307
11.6 Non-dimensional parameters 311
11.7 Methods for performance calculations 312
Problems 313

12 Rotorcraft in vertical flight 315
12.1 Hover performance 315
12.2 Effect of blade twist 323
12.3 Non-dimensional hover performance 324
12.4 Vertical climb 326
12.5 Ceiling performance 328
12.6 Ground effect 331
12.7 Vertical descent 332
12.8 Hover endurance 334
Problems 335
13 Rotorcraft in forward flight 337
 13.1 Asymmetry of rotor loads 337
 13.2 Power requirements 338
 13.3 Rotor disk angle 357
 13.4 Calculation of forward flight power 359
 13.5 L/D of the helicopter 361
 13.6 Forward flight analysis 362
 13.7 Propulsive efficiency 366
 13.8 Climb performance 367
 13.9 Performance of tandem helicopters 370
 13.10 Single or tandem helicopter? 377
Problems 380

14 Rotorcraft maneuver 383
 14.1 Limits on flight envelopes 383
 14.2 Kinetic energy of the rotor 385
 14.3 Autorotative index 387
 14.4 Autorotative performance 389
 14.5 Height/velocity diagram 398
 14.6 The vortex ring state 400
 14.7 Take-off and landing 404
 14.8 Turn performance 404
 14.9 Power required for turning 406
 14.10 More on tail rotor performance 410
Problems 412

15 Rotorcraft mission analysis 413
 15.1 Specific air range 413
 15.2 Non-dimensional analysis of the SAR 415
 15.3 Endurance and specific endurance 416
 15.4 Speed for minimum power 417
 15.5 Speed for maximum range 419
 15.6 Fuel to climb 420
 15.7 Payload/range diagram 422
 15.8 Comparative payload fraction 428
 15.9 Mission analysis 429
Problems 430

Part III V/STOL and Noise Performance

16 V/STOL performance 435
 16.1 Hover characteristics 435
 16.2 Jet-induced lift 437
 16.3 Lift augmentation 440
 16.4 Calculation of short take-off 441
 16.5 Ski jump 445
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>Convertiplanes or tilt rotors</td>
<td>448</td>
</tr>
<tr>
<td>16.7</td>
<td>V/STOL flight envelopes</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>449</td>
</tr>
<tr>
<td>17</td>
<td>Noise performance</td>
<td>451</td>
</tr>
<tr>
<td>17.1</td>
<td>Definitions of sound and noise</td>
<td>452</td>
</tr>
<tr>
<td>17.2</td>
<td>Trends in noise reduction</td>
<td>454</td>
</tr>
<tr>
<td>17.3</td>
<td>Airframe noise of fixed-wing aircraft</td>
<td>456</td>
</tr>
<tr>
<td>17.4</td>
<td>Engine noise</td>
<td>460</td>
</tr>
<tr>
<td>17.5</td>
<td>Noise certification procedure</td>
<td>461</td>
</tr>
<tr>
<td>17.6</td>
<td>Noise reduction from operations</td>
<td>464</td>
</tr>
<tr>
<td>17.7</td>
<td>Minimum noise to climb</td>
<td>467</td>
</tr>
<tr>
<td>17.8</td>
<td>Helicopter noise</td>
<td>469</td>
</tr>
<tr>
<td>17.9</td>
<td>Helicopter noise reduction</td>
<td>472</td>
</tr>
<tr>
<td>17.10</td>
<td>Noise certification of civil helicopters</td>
<td>472</td>
</tr>
<tr>
<td>17.11</td>
<td>Sonic boom</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>478</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Aircraft models</td>
<td>479</td>
</tr>
<tr>
<td>A.1</td>
<td>Aircraft A: subsonic commercial jet</td>
<td>479</td>
</tr>
<tr>
<td>A.2</td>
<td>Aircraft B: turboprop transport aircraft</td>
<td>484</td>
</tr>
<tr>
<td>A.3</td>
<td>Aircraft C: supersonic jet fighter</td>
<td>487</td>
</tr>
<tr>
<td>A.4</td>
<td>Aircraft D: General utility helicopter</td>
<td>494</td>
</tr>
<tr>
<td>A.5</td>
<td>Aircraft E: tandem helicopter</td>
<td>502</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Noise data</td>
<td>507</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Selected simulation programs</td>
<td>509</td>
</tr>
<tr>
<td>C.1</td>
<td>Assembling aircraft forces</td>
<td>509</td>
</tr>
<tr>
<td>C.2</td>
<td>Calculation of numerical derivatives</td>
<td>510</td>
</tr>
<tr>
<td>C.3</td>
<td>Optimal climb of fighter jet aircraft</td>
<td>510</td>
</tr>
<tr>
<td>C.4</td>
<td>Optimal climb rate of turboprop</td>
<td>513</td>
</tr>
<tr>
<td>C.5</td>
<td>Calculation of mission fuel</td>
<td>515</td>
</tr>
<tr>
<td>C.6</td>
<td>Supersonic acceleration</td>
<td>518</td>
</tr>
<tr>
<td>C.7</td>
<td>Asymmetric thrust control</td>
<td>521</td>
</tr>
<tr>
<td>C.8</td>
<td>Hover power with blade element theory</td>
<td>524</td>
</tr>
<tr>
<td>C.9</td>
<td>Forward flight power of helicopter</td>
<td>526</td>
</tr>
</tbody>
</table>

Bibliography

Index