Contributor contact details ix
Preface xi

1 Overview

P. K. Mallick, University of Michigan-Dearborn, USA

1.1 Introduction 1
1.2 Materials scenario 3
1.3 Materials selection considerations for lightweight vehicles 23
1.4 Conclusion 29
1.5 References 30

Part I Materials for lightweight automotive structures

2 Advanced steels for lightweight automotive structures

C. D. Horvath, General Motors, USA

2.1 History of steel in automobiles 35
2.2 Types of high strength steels 37
2.3 Third generation advanced high strength steels 54
2.4 Manufacturing and forming high strength steels 55
2.5 Designing with steels for lightweighting automotive structures 68
2.6 Conclusion 76
2.7 References 77

3 Aluminum alloys for lightweight automotive structures

J. C. Benedyk, Illinois Institute of Technology, USA

3.1 Introduction 79
3.2 International designation systems for aluminum alloys 83
3.3 International temper designations for aluminum alloys 84
Contents

3.4 Aluminum alloys used in lightweight automotive vehicles 85
3.5 Substituting aluminum alloys for competitive materials 107
3.6 References 110

4 Magnesium alloys for lightweight powertrains and automotive structures 114
B. R. Powell, P. E. Krajewski, and A. A. Luo, General Motors, USA
4.1 Introduction 114
4.2 Cast magnesium 121
4.3 Sheet magnesium 142
4.4 Extruded magnesium 155
4.5 Future trends 164
4.6 Acknowledgments 168
4.7 References 168

5 Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures 174
P. K. Mallick, University of Michigan-Dearborn, USA
5.1 Introduction 174
5.2 Thermoplastics used in automobiles 175
5.3 Thermoplastic matrix composites for automobiles 186
5.4 Joining of thermoplastic matrix composites 202
5.5 Conclusion 205
5.6 References 206

6 Thermoset–matrix composites for lightweight automotive structures 208
P. K. Mallick, University of Michigan-Dearborn, USA
6.1 Introduction 208
6.2 Materials 209
6.3 Manufacturing processes 219
6.4 Carbon fiber reinforced thermoset–matrix composites 228
6.5 Conclusion 230
6.6 References 230

© Woodhead Publishing Limited, 2010
Part II Manufacturing and design of lightweight automotive structures

7 Manufacturing processes for light alloys 235
G. T. Kridli, University of Michigan-Dearborn, USA; P. A. Friedman and J. M. Boileau, Ford Research and Innovation Center, USA

7.1 Choosing light alloys 235
7.2 Materials of interest 235
7.3 Vehicle architecture design and manufacturing 242
7.4 Forming of structural components 248
7.5 Cast structural components 260
7.6 Casting processes 261
7.7 Enablers 269
7.8 Promising metal forming processes for automotive applications 270
7.9 References 272

8 Joining for lightweight vehicles 275
P. K. Mallick, University of Michigan-Dearborn, USA

8.1 Introduction 275
8.2 Liquid phase welding 276
8.3 Solid phase welding 286
8.4 Mechanical joining 294
8.5 Adhesive joining 298
8.6 Joining of polymer matrix composites 301
8.7 Conclusion 304
8.8 Acknowledgment 306
8.9 References 306

9 Recycling and life cycle issues for lightweight vehicles 309
S. Das, Oak Ridge National Laboratory, USA

9.1 Introduction 309
9.2 Life cycle analysis 311
9.3 Recycling 313
9.4 Importance of recycling in the context of life cycle analysis 317
9.5 Trends and issues in lightweight materials recycling 321
9.6 Conclusions 329
9.7 References 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>332</td>
</tr>
<tr>
<td>10.2</td>
<td>Background of vehicle crash safety</td>
<td>333</td>
</tr>
<tr>
<td>10.3</td>
<td>Designing for crashworthiness with lightweight materials</td>
<td>335</td>
</tr>
<tr>
<td>10.4</td>
<td>Crash safety design using computer-aided engineering (CAE)</td>
<td>341</td>
</tr>
<tr>
<td>10.5</td>
<td>Fiber reinforced composites for lightweight automotive body structures</td>
<td>350</td>
</tr>
<tr>
<td>10.6</td>
<td>Miscellaneous lightweight countermeasures</td>
<td>353</td>
</tr>
<tr>
<td>10.7</td>
<td>Conclusion</td>
<td>355</td>
</tr>
<tr>
<td>10.8</td>
<td>References</td>
<td>355</td>
</tr>
</tbody>
</table>

Index 357