Innovation in aeronautics

Edited by Trevor M. Young and Mike Hirst
Contents

Contributor contact details

1 Introduction to innovation in aeronautics 1
T. M. YOUNG, University of Limerick, Ireland, and M. HIRST, Independent consultant, UK
1.1 Introduction 1
1.2 Concepts 4
1.3 Change 8
1.4 Challenges 10

Part I Concepts 13

2 Biologically inspired technologies for aeronautics 15
Y. BAR-COHEN, Jet Propulsion Laboratory (JPL)/California Institute of Technology, USA
2.1 Introduction 15
2.2 Biologically inspired or independent human innovation 18
2.3 Nature as a source of innovation in aerospace 21
2.4 Biologically inspired mechanisms and systems 25
2.5 Robotics as beneficiary of biomimetic technologies 31
2.6 Conclusion: challenges and potential development 34
2.7 Acknowledgement 34
2.8 References 35

3 Aircraft morphing technologies 37
W. W. HUEBSCH and S. D. HAMBURG, West Virginia University, and R. W. GUILER, Physical Sciences Inc., USA
3.1 Introduction 37
3.2 Early aircraft morphing developments 37
3.3 Keeping morphing alive – NASA research in morphing aircraft structures 38

© Woodhead Publishing Limited, 2012
10 Managing innovative technology development in aeronautics: technology assessment (TA) techniques
R. Henke, RWTH Aachen, Germany

10.1 Introduction 214
10.2 Methods and limitations 216
10.3 Approach and example 219
10.4 Conclusion 223
10.5 Abbreviations 223

11 Mining the ‘far side’ of technology to develop revolutionary aircraft prototypes: the Defense Advanced Research Projects Agency (DARPA) approach
J. R. Wilson, Freelance writer, USA

11.1 Introduction 225
11.2 Defense Advanced Research Projects Agency’s (DARPA) philosophy and structure 226
11.3 DARPA and innovation in aviation 227
11.4 Examples of DARPA innovation in aviation 227
11.5 DARPA’s aviation-related programs 230
11.6 Conclusions 231
11.7 References 232

12 Revolutionary ideas about the future of air transport
M. Hirst, Independent consultant, UK

12.1 The mind set to find revolutionary solutions 233
12.2 Technological change 235
12.3 A framework for assessing revolutionary ideas 242
12.4 Carrying forward requirements into design 249
12.5 Telecommunications and IT in society 251
12.6 The revolution – far beyond the air vehicle 253
12.7 Further reading 259

Part III Challenges

13 Intellectual property, patents and innovation in aeronautics
D. A. McCarville, Oregon Institute of Technology, and The Boeing Company, USA

13.1 Introduction 263
13.2 Commentary on likely future trends 264

© Woodhead Publishing Limited, 2012
13.3 Creativity and innovation as a mechanism for capturing intellectual property 265
13.4 Intellectual property and patenting 271
13.5 Converting patents into products 277
13.6 Establishing patent value 279
13.7 Trends driving innovation within the commercial aerospace industry 281
13.8 The switch from aluminum to composites 282
13.9 Conception of AMP equipment 282
13.10 AMP equipment definitions 284
13.11 Evolution of AMP equipment 287
13.12 AMP equipment family tree 299
13.13 Conclusion 300
13.14 Sources of further information 300
13.15 References 300
13.16 Appendix: AMP acronym list 303

14 Cost, time and technical performance risk mitigation in large, complex and innovative aeronautics development projects 305
T. BROWNING, Texas Christian University, USA
14.1 Introduction 305
14.2 Interdependence of development cost, schedule, and technical performance 306
14.3 The aspect of risk 307
14.4 An integrated decision-support model – the risk value method (RVM) 311
14.5 Example: an unmanned combat aerial vehicle (UCAV) development project 313
14.6 Discussion 318
14.7 Conclusion and future trends 320
14.8 Sources of further information and advice 321
14.9 References 321

15 Innovation in aeronautics through Lean Engineering 323
E. M. MURMAN, MIT, USA
15.1 Introduction 323
15.2 Dynamics of innovation 325
15.3 Lean Thinking 327
15.4 Lean Thinking and aerospace 332
15.5 Lean Engineering framework 333
15.6 Tailoring Lean Engineering 351
15.7 Lean Engineering challenges 356
15.8 Summary 357

© Woodhead Publishing Limited, 2012
Part IV Conclusion

16 Conclusion: innovations in aeronautics

T. M. YOUNG, University of Limerick, Ireland, and M. HIRST, Independent consultant, UK

16.1 Introduction

16.2 Innovation and risk

16.3 Technology readiness levels (TRLs)

16.4 Capturing innovation and disruptive technologies

16.5 Key design drivers

16.6 Moving from concept to implementation

16.7 Computer-assisted engineering and design

16.8 The innovation process

16.9 Developing a culture of innovation

16.10 Innovation ‘agendas’

16.11 Education and innovation

16.12 References

Glossary

Index