Contents

1. Introduction

1.1 Preamble 1
1.2 Why Aerospace Composites? 3
1.3 What Are Aerospace Composites? 3
 1.3.1 Definition of Aerospace Composites 3
 1.3.2 High-Performance Fibers for Aerospace Composites Applications 4
 1.3.3 High-Performance Matrices for Aerospace Composites Applications 5
 1.3.4 Advantages of Composites in Aerospace Usage 5
 1.3.5 Fabrication of Aerospace Composites 7
1.4 Evolution of Aerospace Composites 8
 1.4.1 Early Advances 9
 1.4.2 Composite Growth in the 1960s and 1970s 9
 1.4.3 Composites Growth Since the 1980s 10
1.5 Today’s Aerospace Composites 10
 1.5.1 Boeing 787 Dreamliner 12
 1.5.2 Airbus A350 XWB 14
1.6 Challenges for Aerospace Composites 15
 1.6.1 Concerns about the Aerospace Use of Composites 16
 1.6.2 The November 2001 Accident of AA Flight 587 16
 1.6.3 Fatigue Behavior of Composite Materials 17
 1.6.4 The Future of Composites in Aerospace 18
1.7 About This Book 20
References 22

2. Fundamentals of Aerospace Composite Materials

2.1 Introduction 26
2.2 Anisotropic Elasticity 27
 2.2.1 Basic Notations 28
 2.2.2 Stresses—The Stress Tensor 28
 2.2.3 Strain—Displacement Relations—The Strain Tensor 29
 2.2.4 Stress—Strain Relations 29
 2.2.5 Equation of Motion in Terms of Stresses 35
 2.2.6 Equation of Motion in Terms of Displacements 35
2.3 Unidirectional Composite Properties 37
 2.3.1 Elastic Constants of a Unidirectional Composite 37
 2.3.2 Compliance Matrix of a Unidirectional Composite 38
 2.3.3 Stiffness Matrix of a Unidirectional Composite 40
 2.3.4 Estimation of Elastic Constants from the Constituent Properties 41
2.4 Plane-Stress 2D Elastic Properties of a Composite Layer 47
 2.4.1 Plane-Stress 2D Compliance Matrix 47
 2.4.2 Plane-Stress 2D Stiffness Matrix 48
 2.4.3 Rotated 2D Stiffness Matrix 49
 2.4.4 Rotated 2D Compliance Matrix 52
 2.4.5 Proof of RTR$^{-1} = T^{-1}$ 53
2.5 Fully 3D Elastic Properties of a Composite Layer 54
 2.5.1 Orthotropic Stiffness Matrix 55
 2.5.2 Rotated Stiffness Matrix 56
 2.5.3 Equations of Motion for a Monoclinic Composite Layer 61
 2.5.4 Rotated Compliance Matrix 62
 2.5.5 Note on the Use of Closed-Form Expression in the C and S matrices 63
 2.5.6 Proof of RTR$^{-1} = T^{-1}$ in 3D 63
2.6 Problems and Exercises 65
References 65

3. Vibration of Composite Structures

3.1 Introduction 68
 3.1.1 Displacements for Axial—Flexural Vibration of Composite Plates 68
 3.1.2 Stress Resultants 69
3.2 Equations of Motion in Terms of Stress Resultants 70
 3.2.1 Derivation of Equations of Motion from Free Body Diagram 70
 3.2.2 Derivation of Axial–Flexural Equations from Stress Equations of Motion 71
 3.2.3 Summary of Equations of Motion in Terms of Stress Resultants 76
 3.2.4 Strains in Terms of Displacements 77
 3.2.5 Strains in Terms of Mid-Surface Strains and Curvatures 78
3.3 Vibration Equations for an Anisotropic Laminated Composite Plate 79
 3.3.1 Stress–Strain Relations for an Anisotropic Laminated Composite Plate 79
 3.3.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate 80
 3.3.3 Stress Resultants in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate 80
 3.3.4 Equations of Motion in Terms of Displacements for an Anisotropic Laminated Composite Plate 83
 3.3.5 Vibration Frequencies and Modes of an Anisotropic Laminated Composite Plate 85
3.4 Vibration Equations for an Isotropic Plate 86
 3.4.1 Isotropic Stress–Strain Relations 87
 3.4.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Isotropic Plate 87
 3.4.3 Stress Resultants for an Isotropic Plate 88
 3.4.4 Equations of Motion in Terms of Displacements for an Isotropic Plate 89
 3.4.5 Vibration Frequencies and Modes of an Isotropic Plate 91
3.5 Special Cases 93
 3.5.1 Symmetric Laminates 93
 3.5.2 Isotropic Laminates 95
3.6 Problems and Exercises 95
 References 95
4. Guided Waves in Thin-Wall Composite Structures
 4.1 Introduction 98
 4.1.1 Overview 98
 4.1.2 Problem Setup 99
 4.1.3 State of the Art in Modeling Guided-Wave Propagation in Laminated Composites 99
 4.1.4 Chapter Layout 101
 4.2 Wave Propagation in Bulk Composite Material—Christoffel Equations 101
 4.2.1 Equation of Motion in Terms of Displacements 102
 4.2.2 Christoffel Equation for Bulk Composites 103
 4.3 Guided Waves in a Composite Ply 104
 4.3.1 Guided Wave as a Superposition of Partial Waves 104
 4.3.2 Coherence Condition—Generalized Snell’s Law 105
 4.3.3 Christoffel Equation for a Lamina 106
 4.3.4 Stresses 109
 4.3.5 State Vector and Field Matrix 112
 4.3.6 Dispersion Curves 112
 4.4 Guided-Wave Propagation in a Laminated Composite 114
 4.4.1 Global Matrix Method (GMM) 115
 4.4.2 Transfer Matrix Method (TMM) 116
 4.4.3 Stiffness Matrix Method (SMM) 118
 4.5 Numerical Computation 122
 4.6 Problems and Exercises 122
 References 122
5. Damage and Failure of Aerospace Composites
 5.1 Introduction 126
 5.2 Composites Damage and Failure Mechanisms 127
 5.2.1 Fiber and Matrix Stress–Strain Curves 127
 5.2.2 Failure Modes in Unidirectional Fiber-Reinforced Composites 129
 5.3 Tension Damage and Failure of a Unidirectional Composite Ply 132
 5.3.1 Strain-Controlled Tension Failure due to Fracture of the Fibers 132
Contents

5.3.2 Statistical Effects on Unidirectional Composite Strength and Failure 132
5.3.3 Shear-Lag Load Sharing between Broken Fibers 133
5.3.4 Fiber Pullout 135
5.4 Tension Damage and Failure in a Cross-Ply Composite Laminate 136
5.4.1 Ply Discount Method 136
5.4.2 Progressive Failure of a Cross-Ply Laminate 136
5.4.3 Interfacial Stresses at Laminate Edges and Cracks 139
5.4.4 Effect of Matrix Cracking on Interlaminar Stresses 142
5.5 Characteristic Damage State (CDS) 142
5.5.1 Definition of the Characteristic Damage State 142
5.5.2 Damage Modes That Modify Local Stress Distribution 145
5.5.3 Stiffness Evolution with Damage Accumulation 146
5.6 Fatigue Damage in Aerospace Composites 148
5.6.1 Fatigue of Unidirectional Composites 148
5.6.2 Fatigue of Cross-Ply Composite Laminate 150
5.7 Long-Term Fatigue Behavior of Aerospace Composites 152
5.7.1 Damage Region I—Progression toward Widespread CDS 152
5.7.2 Damage Region II—Crack Coupling and Delamination 154
5.7.3 Damage Region III—Damage Acceleration and Final Failure 157
5.7.4 Summary of Long-Term Fatigue Behavior of Composites 159
5.8 Compression Fatigue Damage and Failure in Aerospace Composites 159
5.8.1 Compression Fatigue Delamination Damage 159
5.8.2 Compression Fatigue Local Micobuckling Damage 160
5.8.3 Compression Fatigue Damage under Combined Tension-Compression Loading 163
5.9 Other Composite Damage Types 163
5.9.1 Fastener Hole Damage in Composites 163
5.9.2 Impact Damage in Composites 165
5.9.3 Composite Sandwich Damage 166
5.9.4 Damage in Adhesive Composite Joints 168
5.10 Fabrication Defects versus In-service Damage 169
5.10.1 Fabrication Defects 169
5.10.2 In-service Damage 170
5.11 What Could SHM Systems Aim to Detect? 171
5.12 Summary and Conclusions 173
5.13 References 174

6. Piezoelectric Wafer Active Sensors 179
6.1 Introduction 179
6.1.1 SMART Layer™ and SMART Suitcase™ 179
6.1.2 Advantages of PWAS Transducers 183
6.2 PWAS Construction and Operational Principles 183
6.3 Coupling between the PWAS Transducer and the Monitored Structure 186
6.3.1 1D Analysis of PWAS Coupling 187
6.3.2 Shear-Layer Analysis for a Circular PWAS 194
6.4 Tuning between PWAS Transducers and Structural Guided Waves 196
6.4.1 Lamb-Wave Tuning with Linear PWAS Transducers 197
6.4.2 Lamb-Wave Tuning with Circular PWAS 201
6.5 Wave Propagation SHM with PWAS Transducers 204
6.5.1 Pitch-Catch Guided-Wave Propagation SHM 205
6.5.2 Pulse-Echo Guided-Wave Propagation SHM 205
6.5.3 Impact and AE Wave Propagation SHM 210
6.6 PWAS Phased Arrays and the Embedded Ultrasonics Structural Radar 212
6.6.1 Phased-Array Processing Concepts 212
6.6.2 Beamforming Formulae for 2D PWAS Phased Arrays 216
6.6.3 Linear PWAS Phased Arrays 220
6.6.4 Embedded Ultrasonics Structural Radar 225
6.6.5 EUSR System Design and Experimental Validation 227
9. Impact and Acoustic Emission Monitoring for Aerospace Composites

9.1 Introduction 318
9.2 Impact Monitoring—PSD 319
 9.2.1 PSD for Impact Location and Force Identification 319
 9.2.2 Triangulation Example 320
 9.2.3 Model-Based Impact Monitoring 323
 9.2.4 Data-Driven Impact Monitoring 326
 9.2.5 Directional Sensors Approach to Impact Detection 328
 9.2.6 AE Monitoring 330
 9.2.7 Simultaneous Monitoring of Impact and AE Events 331
9.3 Impact Damage Detection—ASD and Acousto-Ultrasonics 334
 9.3.1 ASD with Piezo Transmitters and Piezo Receivers 335
 9.3.2 ASD with Piezo Transmitters and Fiber-Optic Receivers 342
 9.3.3 Guided-Wave Tomography and Data-Driven ASD 345
 9.3.4 PWAS Pulse-Echo Crack Detection in Composite Beam 346
 9.3.5 Phased Arrays and Directional Transducers 347
9.4 Other Methods for Impact Damage Detection 352
 9.4.1 Direct Methods for Impact Damage Detection 352
 9.4.2 Strain-Mapping Methods for Damage Detection 357
 9.4.3 Vibration SHM of Composites 358
 9.4.4 Frequency Transfer Function SHM of Composites 361
 9.4.5 Local-Area Active Sensing with EMIS Method 363
9.5 Electrical and Electromagnetic Field Methods for Delamination Detection 365
 9.5.1 Delamination Detection with the Electrical Resistance Method 365
 9.5.2 Delamination Detection with the Electrical Potential Method 375
 9.5.3 Electromagnetic Damage Detection in Aerospace Composites 381
9.5.4 Hybrid Electromagnetic SHM of Aerospace Composites 381
9.5.5 Self-Sensing Electrical Resistance-Based Damage Detection and Localization 383
9.6 PSD and ASD of Sandwich Composite Structures 384
9.7 Summary and Conclusions 386
References 388

10. SHM of Fatigue Degradation and Other In-Service Damage of Aerospace Composites

10.1 Introduction 396
10.2 Monitoring of Strain, Acoustic Emission, and Operational Loads 397
 10.2.1 Strain Distribution Monitoring 401
 10.2.2 Composite Panel Buckling Monitoring 405
10.3 Acoustic Emission Monitoring 405
10.4 Simultaneous Monitoring of Strain and Acoustic Emission 407
10.5 Fatigue Damage Monitoring 409
 10.5.1 Fiber-Optic Monitoring of Transverse Cracks in Cross-ply Composites 409
 10.5.2 Pitch-Catch Guided-Wave Detection of Fatigue Microcracking and Delamination 410
 10.5.3 ECIS Monitoring of Composites Fatigue Damage 414
10.6 Monitoring of In-service Degradation and Fatigue with the Electrical Resistance Method 416
 10.6.1 Fundamentals of the Electrical Resistance Method 417
 10.6.2 Electrical Resistance SHM of CFRP Composites 418
 10.6.3 Electrical Resistance SHM of CNT Doped GFRP Composites 422
 10.6.4 Wireless Sensing Using the Electrical Resistance Method 423
10.7 Disbands and Delamination Detection and Monitoring 425
 10.7.1 Disbond and Delamination Detection with Conventional Ultrasonics Guided Waves 425
 10.7.2 Monitoring of Composite Patch Repairs 425
CONTENTS

10.7.3 Monitoring of Composite Adhesive Joints 426
10.7.4 Dielectrical SHM of Delamination and Water Seapage in GFRP Composites 428
10.8 Summary, Conclusions, and Suggestions for Further Work 430
References 432

11. Summary and Conclusions

11.1 Overview 435
11.2 Composites Behavior and Response 436
11.3 Damage and Failure of Aerospace Composites 438
11.4 Sensors for SHM of Aerospace Composites 440
11.5 Monitoring of Impact Damage Initiation and Growth in Aerospace Composites 442
11.6 Monitoring of Fatigue Damage Initiation and Growth in Aerospace Composites 443
11.7 Summary and Conclusions 445

Index 447