Contents

Foreword ix
Preface xi

1. Requirements for the Hydraulic System of a Flight Control System

 1.1 The Development of the Hydraulic System Related to the Flight Control System 1
 1.1.1 Mission Reliability 6
 1.1.2 Quantitative Flight Safety 7
 1.2 The Interface between the FCS and Hydraulic System 8
 1.2.1 Aircraft Control Surfaces 8
 1.2.2 Interface between Flight Controls and Hydraulic Systems 11
 1.3 Actuation Systems 13
 1.3.1 The Actuation System Powered by Centralized Hydraulic Supply 14
 1.3.2 The Actuation System Powered by Electrical Supply 24
 1.3.3 Commercial Aircraft Implementation 27
 1.4 Requirement of the FCS to the Hydraulic System 33
 1.4.1 System Safety Requirements 34
 1.4.2 Requirement of Airworthiness 36
 1.4.3 Actuation System Performance Criteria 38
 1.4.4 Actuator Modeling 46
 1.4.5 Basic Parameters of Aircraft Hydraulic System 48
 1.5 Conclusions 50
References 51

2. Aircraft Hydraulic Systems

 2.1 Introduction of Aircraft Hydraulic Systems 53
 2.1.1 Basic Structure of a Hydraulic System 55
 2.1.2 Hydraulic System of the Boeing Family 60
 2.1.3 Hydraulic System of the Airbus Family 62
 2.2 Basic Parameters of an Aircraft Hydraulic System 69
 2.2.1 Hydraulic Fluid 69
 2.2.2 Hydraulic Pressure 70
 2.2.3 Fluid Temperature 71
3. Comprehensive Reliability Design of Aircraft Hydraulic System

3.1 Quality and Reliability

3.2 Comprehensive Reliability

3.3 Comprehensive Reliability Theory

3.4 Reliability Design of a Hydraulic System

3.5 Design for Maintainability

3.6 Safety Assessment Methods

3.7 Comprehensive Reliability Evaluation of a Hydraulic System

3.8 Conclusions

References
4. **New Technology of Aircraft Hydraulic System**

4.1 **Introduction**

4.2 **High-Pressure, High-Power Hydraulic Aircraft Power Supply Systems**
 - 4.2.1 Introduction of High Pressure
 - 4.2.2 High Power
 - 4.2.3 The Problem of High-Pressure Hydraulic Systems

4.3 **Intelligent Hydraulic Power Supply System**
 - 4.3.1 The Requirement of an Intelligent Control Pump
 - 4.3.2 The Structure of an Intelligent Variable Pump
 - 4.3.3 Information Interaction Analysis of an Intelligent Control Pump
 - 4.3.4 Control of Intelligent Pump

4.4 **New Architecture Based on 2H/2E**
 - 4.4.1 EHA Principle
 - 4.4.2 EBHA Principle
 - 4.4.3 Dissimilar Redundant Hybrid Actuation System
 - 4.4.4 Electromechanical Principle

4.5 **Prognostics and Health Management of Hydraulic Systems**
 - 4.5.1 Development of PHM
 - 4.5.2 PHM Structure
 - 4.5.3 PHM Information Acquisition and Fault Feature Extraction
 - 4.5.4 PHM Hierarchical Intelligent Fault Diagnosis Algorithm
 - 4.5.5 PHM Fault Prediction
 - 4.5.6 Maintenance of PHM
 - 4.5.7 PHM Evaluation

References

Abbreviations

Notation and Symbols

Index