Contents

Contributor contact details
xiii

Preface
xix

Part I Overview and challenges for the future

1. **‘Light’ industry: an introduction to laser processing and its industrial applications**
 W. M. Steen, University of Liverpool, UK
 - 1.1 What is a laser?
 - 1.2 Interaction of optical energy with matter
 - 1.3 Characteristics of optical energy
 - 1.4 Range of current industrial applications
 - 1.5 Future trends
 - 1.6 References and further reading
 - 3

2. **The challenges ahead for laser macro, micro, and nano manufacturing**
 L. Li, University of Manchester, UK
 - 2.1 Introduction
 - 2.2 Laser cutting
 - 2.3 Laser welding
 - 2.4 Laser drilling
 - 2.5 Laser surface engineering
 - 2.6 Additive multiple layer manufacturing
 - 2.7 Micro/nano fabrication
 - 2.8 Fundamental beam/material interactions and process modelling
 - 2.9 Laser systems
 - 2.10 Conclusions
 - 2.11 References
 - 20
Contents

Part II Laser cutting and machining

3 Laser fusion cutting of difficult materials 43
A. Rivero, F. Quintero and J. Pou, University of Vigo, Spain

3.1 Introduction 43
3.2 Principles involved in fusion laser cutting 44
3.3 Experiences in laser cutting of difficult materials 45
3.4 Attempts to improve cutting process 49
3.5 Conclusions 61
3.6 Acknowledgements 62
3.7 References 62

4 Laser-assisted glass cleaving 69
Y.-L. Kuo and J. Lin, National Cheng Kung University, Taiwan

4.1 Introduction 69
4.2 The multiple laser system 70
4.3 Numerical simulation 71
4.4 Numerical results and discussions 74
4.5 Crack propagation in laser cleaving 80
4.6 Conclusions 82
4.7 Acknowledgements 86
4.8 References and further reading 86

5 Laser dicing of silicon and electronics substrates 88
H. Y. Zheng, X. C. Wang and Z. K. Wang, Singapore Institute of Manufacturing Technology (SIMTech), Singapore

5.1 Introduction 88
5.2 Laser machining of silicon: an overview of the cutting process 90
5.3 Conventional laser dicing of silicon wafer 91
5.4 Other laser dicing techniques 98
5.5 Laser-silicon interaction 112
5.6 Laser processing of printed circuit board (PCB) substrates 118
5.7 Conclusions 127
5.8 References 130

6 Laser machining of carbon fibre-reinforced plastic composites 136

6.1 Introduction 136

© Woodhead Publishing Limited, 2010
6.2 Laser–FRP composite interaction 138
6.3 Investigation of UV laser machining of carbon fibre-reinforced plastics (CFRP) 142
6.4 Modelling of UV laser cutting/machining of carbon fibre-reinforced plastic (CFRP) materials 162
6.5 Conclusions and future trends 173
6.6 References 175

Part III Laser welding

7 Understanding and improving process control in pulsed and continuous wave laser welding 181
S. Katayama, Osaka University, Japan
7.1 Introduction 181
7.2 Laser spot welding results, and formation mechanisms and suppression procedures of welding defects 182
7.3 Continuous wave (CW) laser welding results, and formation mechanisms and suppression procedures of welding defects 194
7.4 Conclusions 207
7.5 References 208

8 Physical mechanisms controlling keyhole and melt pool dynamics during laser welding 211
R. Fabbro, Arts et Metiers ParisTech/CNRS, France
8.1 Introduction 211
8.2 Keyhole formation and dynamics 213
8.3 Melt pool dynamics 219
8.4 Discussion 233
8.5 Conclusions 238
8.6 References 238
8.7 List of symbols 240

9 Laser microspot welding in electronics production 242
I. Mys and M. Schmidt, Bayerisches Laserzentrum GmbH, Germany
9.1 Introduction 242
9.2 State of the art 243
9.3 Micro welding of copper and aluminium 246
9.4 Reliability of copper-aluminium (Cu-Al) welded joints 256
9.5 Conclusions 259
9.6 References 260

© Woodhead Publishing Limited, 2010
Contents

10 Enhancing laser welding capabilities by hybridisation or combination with other processes 261
D. PETRING, Fraunhofer-Institute for Laser Technology (ILT), Germany

10.1 Introduction 261
10.2 Advances by hybrid welding with laser and arc 264
10.3 Advances by combination of laser welding and laser cutting 275
10.4 Future trends 281
10.5 References 285

Part IV Laser annealing and hardening

11 Laser transformation hardening of steel 291
S. BÖNL, Fraunhofer Institute for Material and Beam Technology (IWS), Germany

11.1 Transformation hardening of steel 291
11.2 Process monitoring 292
11.3 Low-cost camera-based process monitoring 294
11.4 Process control 300
11.5 Gas influence 300
11.6 Beam shaping 301
11.7 Simultaneous laser heat treatment 304
11.8 Production systems 310
11.9 References 325

12 Pulsed laser annealing technology for nanoscale fabrication of silicon-based devices in semiconductors 327
K. L. PÉY and P.S. LEE, Nanyang Technological University (NTU), Singapore

12.1 Introduction 327
12.2 Laser induced formation of p/n junction 328
12.3 Laser induced formation of silicide 348
12.4 Conclusions and future trends 360
12.5 References 360

Part V Surface treatment, coating and materials deposition using lasers

13 The laser-induced forward transfer technique for microprinting 367
P. SERRA, M. DUOCASTELLA, J. M. FERNÁNDEZ-PRADAS and J. L. MORENZA, University of Barcelona, Spain

13.1 Introduction: laser direct-writing techniques 367

© Woodhead Publishing Limited, 2010
Contents

13.2 Laser-induced forward transfer (LIFT) of solid films 369
13.3 Microprinting of complex materials through laser-induced forward transfer (LIFT) 374
13.4 Other laser forward transfer techniques 386
13.5 Conclusions 387
13.6 Acknowledgements 387
13.7 References 387

14 Production of biomaterial coatings by laser-assisted processes 394
J. Pou, F. Lusquiños, R. Comesaña and M. Boutinguiza, University of Vigo, Spain
14.1 Introduction 394
14.2 The laser way to produce coatings 396
14.3 Pulsed laser deposition of bioceramics 396
14.4 Laser cladding of bioceramics 406
14.5 Conclusions 417
14.6 Acknowledgements 419
14.7 References 419

15 Thick metallic coatings produced by coaxial and side laser cladding: processing and properties 426
V. Ocelík and J. T. M. De Hosson, University of Groningen, The Netherlands
15.1 Introduction 426
15.2 Coaxial laser cladding geometry and theoretical calculations 429
15.3 Experimental evaluation of coaxial and side cladding processes 432
15.4 Statistical relations between processing parameters and laser track geometry 435
15.5 Microstructural characteristics and properties of thick metallic coatings 444
15.6 Conclusions 454
15.7 Acknowledgements 455
15.8 References 455

Part VI Laser rapid manufacturing and net-shape engineering

16 Laser direct metal deposition: theory and applications in manufacturing and maintenance 461
A. J. Pinkerton, The University of Manchester, UK
16.1 Introduction to laser direct metal deposition 461
Part VII Laser micro- and nano-fabrication

19 Laser ablation

C. Dowding, Loughborough University, UK

- **19.1 Ablation: a broad term**
- **19.2 Issues arising from debris in laser micromachining**
- **19.3 Methods of examining ablation mechanisms**
- **19.4 Ablation product trajectory**
- **19.5 Size and form of ablation products**
- **19.6 Increasing machining efficiency and quality**
- **19.7 Pulsed laser ablation in gases**

© Woodhead Publishing Limited, 2010
Contents

19.8 Liquid confined ablation 588
19.9 Laser beam plume shielding contributions 592
19.10 Applications of liquid immersed solid ablation 595
19.11 Liquid application for the function of debris control 597
19.12 Beam shape debris deposition dependency in gaseous media 598
19.13 General impact of closed thick film flowing filtered water immersion on laser ablation machining 599
19.14 Impact of flow velocity on laser ablation machining 606
19.15 References 622

20 Laser micro/nano-fabrication techniques and their applications in electronics 626
Y. CAO, X. ZENG, Z. CAI and J. DUAN, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China

20.1 Definition and basic features of laser micro-fabrication 629
20.2 Laser micro-fabrication as a subtractive process 631
20.3 Laser micro-fabrication for additive processing 642
20.4 Laser micro-cladding techniques 649
20.5 Laser micro-welding, bonding and forming 666
20.6 Conclusions 666
20.7 References 668

21 Laser processing of direct-write nano-sized materials 671
O. F. SWENSON and V. MARINOV, North Dakota State University, USA

21.1 Introduction 671
21.2 Direct-write deposition of nano-sized materials 672
21.3 Background of nano-sized materials sintering 676
21.4 Laser sintering of direct write nano-sized materials 680
21.5 Future trends 690
21.6 Sources of further information and advice 691
21.7 Acknowledgements 691
21.8 References 692

22 Micro- and nano-parts generated by laser-based Solid Freeform Fabrication 695
A. OSTENDORF, Ruhr-Universität Bochum, Germany, A. NEUMEISTER and S. DUDZIAK, Laser Zentrum Hannover e.V., Germany, S. PASSINGER, Leuz electronic GmbH & Co KG, Germany and J. STAMPFI, Technische Universität Wien, Austria

22.1 Introduction 695
22.2 Manufacturing based on photopolymerization 698

© Woodhead Publishing Limited, 2010
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.3</td>
<td>Materials for micro stereo lithography (MSL) and two-photolaser lithography (TPP)</td>
<td>713</td>
</tr>
<tr>
<td>22.4</td>
<td>Manufacturing based on sintering, melting and cladding</td>
<td>718</td>
</tr>
<tr>
<td>22.5</td>
<td>Materials for micro sintering, melting and cladding</td>
<td>728</td>
</tr>
<tr>
<td>22.6</td>
<td>Conclusions</td>
<td>729</td>
</tr>
<tr>
<td>22.7</td>
<td>References</td>
<td>730</td>
</tr>
<tr>
<td>23</td>
<td>Laser-assisted additive fabrication of micro-sized coatings</td>
<td>735</td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>735</td>
</tr>
<tr>
<td>23.2</td>
<td>Laser-based technologies for additive manufacturing of micro-sized coatings</td>
<td>736</td>
</tr>
<tr>
<td>23.3</td>
<td>Case studies</td>
<td>750</td>
</tr>
<tr>
<td>23.4</td>
<td>Conclusions</td>
<td>758</td>
</tr>
<tr>
<td>23.5</td>
<td>References</td>
<td>759</td>
</tr>
</tbody>
</table>

Part VIII Mathematical modelling and control of laser processes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Multiphysics modelling of laser solid freeform fabrication techniques</td>
<td>765</td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>765</td>
</tr>
<tr>
<td>24.2</td>
<td>Physics of laser solid freeform fabrication (LSFF)</td>
<td>768</td>
</tr>
<tr>
<td>24.3</td>
<td>Multi-physics modelling of laser solid freeform fabrication (LSFF) processes</td>
<td>772</td>
</tr>
<tr>
<td>24.4</td>
<td>Numerical multi-physics modelling – a case study</td>
<td>777</td>
</tr>
<tr>
<td>24.5</td>
<td>Conclusions</td>
<td>788</td>
</tr>
<tr>
<td>24.6</td>
<td>References</td>
<td>789</td>
</tr>
<tr>
<td>25</td>
<td>Process control of laser materials processing</td>
<td>792</td>
</tr>
<tr>
<td>25.1</td>
<td>Introduction</td>
<td>792</td>
</tr>
<tr>
<td>25.2</td>
<td>Theory</td>
<td>793</td>
</tr>
<tr>
<td>25.3</td>
<td>Experiments</td>
<td>798</td>
</tr>
<tr>
<td>25.4</td>
<td>Experimental results</td>
<td>799</td>
</tr>
<tr>
<td>25.5</td>
<td>Discussion</td>
<td>799</td>
</tr>
<tr>
<td>25.6</td>
<td>Conclusions</td>
<td>804</td>
</tr>
<tr>
<td>25.7</td>
<td>Acknowledgements</td>
<td>805</td>
</tr>
<tr>
<td>25.8</td>
<td>References</td>
<td>805</td>
</tr>
</tbody>
</table>

Index 806