Contents

List of Contributors xiii
Preface xv
Acknowledgments xvii

1 Introduction to Multifunctionality and Manufacture 1
 Ruth Cherrington and Vanessa Goodship
1.1 Introduction to Multifunctionality and Manufacture 1
1.2 Plastic Processing Routes 4
 1.2.1 Extrusion-Based Processes 5
 1.2.2 Nonextrusion-Based Processes 12
1.3 Limitations 14
1.4 Example Application 15
 1.4.1 Creating Touch Screen Displays Using In-Mold Labeling (IML) 15
1.5 Conclusions 16
References 17

2 Materials and Deposition Processes for Multifunctionality 19
 Ruth Cherrington and Jianwang Liang
2.1 Materials 19
 2.1.1 Introduction 19
 2.1.2 Electrical Conductivity 20
 2.1.3 Thermally Conductive Materials 30
 2.1.4 Antimicrobial Materials 31
 2.1.5 Magnetic Materials 32
 2.1.6 Shape-Memory Polymers 35
 2.1.7 Not Just Polymers! A Brief Introduction to Ceramics 37
2.2 Film-Forming Processes 38
 2.2.1 Introduction 38
 2.2.2 Vacuum Deposition 40
 2.2.3 Screen Printing 40
 2.2.4 Doctor Blading 40
 2.2.5 Slot-Die Coating 41
 2.2.6 Gravure Coating 41
3 Composites: Manufacture and Application 53

Bethany Middleton

3.1 Introduction 53

3.2 Materials 53
 3.2.1 Matrix 54
 3.2.2 Reinforcement 55
 3.2.3 Composite Materials 60

3.3 Processing 66
 3.3.1 Hand Lay-Up 66
 3.3.2 Spray Lay-Up 67
 3.3.3 Vacuum Bagging 68
 3.3.4 Resin Infusion 69
 3.3.5 Resin Transfer Molding (RTM) 70
 3.3.6 Compression Molding 71
 3.3.7 Stamp Forming 72
 3.3.8 Automated Cutting And AFP 73
 3.3.9 Autoclave 73
 3.3.10 Out of Autoclave (OoA) 74
 3.3.11 Injection Molding 75
 3.3.12 Extrusion 76
 3.3.13 Pultrusion 76
 3.3.14 Filament Winding 77

3.4 Composite Properties and Markets 77
 3.4.1 Bulk Properties 77
 3.4.2 Composite Market 80

3.5 Research Trends in PMCs 87
 3.5.1 Raw Material and Processing 87
 3.5.2 Hybrid Composites 88
 3.5.3 Green and Biocomposites 89
 3.5.4 Joining 90
 3.5.5 Recycling 91
 3.5.6 Multifunctionality 91

3.6 Barriers to Multifunctionality 95
 3.6.1 Financial Impact 95
 3.6.2 Political Impact 95
Contents

3.6.3 Environmental Impacts 96
3.6.4 Social Impacts 97
3.7 Conclusions: Advantages and Disadvantages 97
 3.7.1 Advantages 97
 3.7.2 Disadvantages 98
Abbreviations 98
References 99
Further Reading 101

4 Injection Molding of Thermoplastics 103

Vannessa Goodship

4.1 Introduction 103
4.2 Polymer Materials 106
 4.2.1 Classification 106
 4.2.2 Thermosets 108
 4.2.3 Elastomers 108
 4.2.4 Silicone-Based Elastomers 110
 4.2.5 Thermoplastics 110
 4.2.6 Polymer Types Relative to Injection Molding 111
 4.2.7 Material Conclusions 120
 4.2.8 Considerations in Using Polymeric Materials as Substrates 121
 4.2.9 A Revisit of Thermosets 122
4.3 Injection Molding Machine and Process 123
 4.3.1 Purpose 123
 4.3.2 Injection Unit 126
 4.3.3 Clamp Unit 127
 4.3.4 Tooling 128
 4.3.5 Mold Cooling 131
 4.3.6 Ancillary Equipment 135
 4.3.7 The Thermoplastic Injection Molding Process Cycle 136
 4.3.8 Process Variations 140
4.4 Toward Multifunctionality – in Mold Techniques and Multishot Techniques 142
 4.4.1 Processes that Combine More than One Material in the Tool 143
4.5 Application Considerations 157
 4.5.1 Automation and the Internet of Things 157
 4.5.2 Packaging 158
 4.5.3 Electronics 159
5 Multifunctionality in Additive Manufacturing

Benjamin M. Wood

5.1 Introduction to Additive Manufacturing 171
5.2 Background and Terminology 172
 5.2.1 The Additive Manufacturing Process Flow 173
5.3 Additive Manufacturing Processes and Materials 175
 5.3.1 Extrusion Processes (FDM/FFF) 176
 5.3.2 Powder Binding (3D Printing) 178
 5.3.3 Powder Bed Fusion (DMLS, SLS, SLM, EBM) 179
 5.3.4 Photocuring (SLA) 181
 5.3.5 Material Jetting (MJM, PJP) 183
 5.3.6 Lamination (LOM) 184
 5.3.7 Process Summary 185
5.4 Applications 185
 5.4.1 Prototypes 185
 5.4.2 Direct Manufacturing 186
 5.4.3 Rapid Tooling 188
5.5 Multifunctionality in Additive Manufacturing 191
 5.5.1 Market-Ready Multifunctionality 192
 5.5.2 Tomorrow’s Multifunctional AM Technologies 194
5.6 Impact of Multifunctionality in Additive Manufacturing 196
 5.6.1 Economic Opportunity 196
 5.6.2 Environmental Impact 197
 5.6.3 Society 197
5.7 Barriers to Multifunctional Additive Manufacturing 198
 5.7.1 Environmental Issues 198
 5.7.2 Intellectual Property 199
 5.7.3 Material Supply and Compatibility 199
 5.7.4 Software and File Formats 200

5.8 Conclusions 201

List of Acronyms 202
References 203

6 Future Outlook 205
 Vannessa Goodship

 6.1 The Future of Manufacturing Multifunctional Systems 205

Index 209