Contents

Foreword I xi
Foreword II xiii
Preface xv
Acknowledgments xvii
Glossary of Symbols and Abbreviations xix

1 Ambient Energy Sources: Mechanical, Light, and Thermal 1
 1.1 Toward a New World Based on Green Energy 1
 1.2 Vibration-to-Electricity Conversion 3
 1.2.1 Electrostatic energy harvesting 4
 1.2.2 Electromagnetic energy harvesting 4
 1.2.3 Piezoelectric energy harvesting 5
 1.2.4 Magnetostriective energy harvesting 6
 1.2.5 Photovoltaic energy harvesting 6
 1.2.6 Radio-frequency energy harvesting 7
 1.3 Thermal-to-Electricity Conversion 8
 1.3.1 Seebeck-effect thermoelectric generator 9
 1.3.2 Peltier-effect thermoelectric cooling 10
 1.3.3 Thermoelectric materials 10
 1.4 Commercial Energy-Harvesting Devices 11
 References 14

2 Fundamentals of Ferroelectric Materials 17
 2.1 Classification of Dielectric Materials 17
 2.2 Important Dielectric Parameters 21
 2.2.1 Electric dipole moment 21
 2.2.2 Polar and nonpolar dielectric materials 21
 2.2.3 Electric polarization 22
 2.2.4 Electric displacement, dielectric constant, and electric susceptibility 22
 2.2.5 Spontaneous polarization 23
 2.3 Electrostrictive Effect 23
 2.4 Piezoelectric Phenomena 24
2.5 Pyroelectric Phenomenon 26
 2.5.1 Pyroelectric current generation 28
2.6 Ferroelectric Phenomena 29
 2.6.1 Ferroelectric domains 31
 2.6.2 Ferroelectric hysteresis 31
 2.6.3 Poling 32
 2.6.4 Paraelectric effect 33
2.7 Conclusion 33
References 34

3 Piezoelectric Energy Harvesting 35
 3.1 Historical Introduction of Piezoelectricity 36
 3.2 Mechanism for Piezoelectricity 41
 3.3 Theory of Dielectricity 43
 3.3.1 Static fields 43
 3.3.2 Time-dependent fields 44
 3.4 Fundamentals of Electric Energy Harvesting 45
 3.5 Piezoelectric Coefficients 46
 3.5.1 Piezoelectric charge coefficient (d_{ij}) 46
 3.5.2 Piezoelectric voltage coefficient (g_{ij}) 46
 3.5.3 Dielectric constant (ε_{ij}) 46
 3.5.4 Coupling coefficient (k_{ij}) 46
 3.6 Electromechanical Properties of Piezoelectric Materials 47
 3.6.1 Piezoelectric constitutive equations 47
 3.6.2 Piezoelectric polymers 48
 3.6.3 Piezoelectric ceramic: properties of PZT 52
 3.6.4 Properties of single-crystal PMN-PT 52
 3.7 Piezoelectric Effect for Energy Harvesting 53
 3.7.1 General theory of mechanical energy conversion 53
 3.7.2 Piezoelectric generators 54
 3.8 Operating Principle of a Piezoelectric Generator System 54
 3.8.1 Mechanical energy source 55
 3.8.2 Mechanical transformers 55
 3.8.3 Piezoelectric materials 55
 3.8.4 Power-transfer electronics 56
 3.8.5 Intelligent energy and storage management 56
 3.9 Cantilevered Energy Harvesters and Types of Cantilever Beam 57
 3.9.1 Unimorph cantilever 57
 3.9.2 Bimorph cantilever 58
 3.9.3 Multimorph cantilever 58
 3.10 Modeling Cantilever Beams 59
 3.11 Piezoelectric Energy Harvesting: A Recent Survey 60
 3.12 Conclusion 63
References 63
4 Parametric Identification and Measurement Techniques for Piezoelectric Energy Harvesters 79

4.1 General Electrical Parameters 79
4.2 Determining Piezoelectric Sensor Coefficients 79
4.2.1 Mechanical model and equivalent electrical circuit 79
4.2.2 Linear piezoelectric model 82
4.3 Electromechanical Coupling Coefficients 83
4.4 Elastic Compliance 84
4.5 Piezoelectric Charge Constants 85
4.6 Piezoelectric Voltage Constants 85
4.7 Mechanical Quality Factor 85
4.8 Methods for Measuring the Physical Properties of Ferroelectric Materials 85
4.8.1 Determining the dielectric properties of ferroelectrics 86
4.8.1.1 Dielectric constants and dielectric spectrum measurements at a low frequency 86
4.8.1.2 Polarization (hysteresis loop) measurements 87
4.8.2 Determination of piezoelectric coefficients 88
4.8.2.1 Berlincourt method for measuring \tilde{d}_{33} and \tilde{d}_{31} 88
4.8.2.2 Impedance analysis for measuring \bar{s}_{53}^E, \bar{s}_{53}^D, and \bar{k}_{33} 90
4.8.3 Pyroelectric coefficient measurements 91
4.8.3.1 Pyroelectric current method 91
4.8.3.2 Pyroelectric charge-integration method 92
4.9 Parametric Identification and Determination for Piezoelectric Energy Harvesters 92
4.9.1 Natural frequency identification 94
4.9.2 Damping factor identification 94
4.9.3 Quality-factor identification 95
4.9.4 Efficiency of energy conversion 95
4.10 Conclusion 96
References 96

5 Theoretical Background of Mechanical Energy Conversion 97
5.1 Euler–Bernoulli Beam 98
5.2 Piezoelectric Cantilevered Beam Using the Euler–Bernoulli Theory 102
5.2.1 Clamped–free piezoelectric cantilever beam 102
5.2.2 Clamped–clamped piezoelectric cantilever beam 108
5.2.3 Clamped–free piezoelectric cantilever beam with tip mass 117
5.3 Lumped Parameter Model 119
5.3.1 Single degree of freedom 120
5.3.2 Two degrees of freedom 122
5.3.3 Three degrees of freedom 123
5.3.4 Lumped parameter model for MEMS applications 131
5.3.5 SDOF for a PMN-PT single crystal in d_{31} 133
5.3.6 Further piezoelectric applications of the Euler–Bernoulli beam theory 135
 5.3.6.1 Nonpiezoelectric layer longer than the piezoelectric layer 135
 5.3.6.2 Piezoelectric layer and nonpiezoelectric layer of equal length 136
 5.3.6.3 Nonpiezoelectric layer shorter than the piezoelectric layer 136
5.3.7 Modeling the PZT sensor using the pin-force method, enhanced pin-force method, and Euler–Bernoulli theory 137
5.4 Further Applications of the 2DOF Model 138
5.5 Tapered Unimorph Beams 142
5.6 Trapezoidal Cantilever Beam 143
5.7 Multiple Piezoelectric Elements 144
 5.7.1 Mathematical evaluation of a multiple-cantilever structure 144
 5.7.2 Four cantilever-type legs and piezoelectric ceramics 148
5.8 Piezoelectric Energy Harvester with a Dynamic Magnifier 151
References 160

6 Techniques for Enhancing Piezoelectric Energy-Harvesting Efficiency 165
 6.1 Techniques to Tune the Resonant Frequency 165
 6.2 Mechanical Tuning Techniques 166
 6.2.1 Changing dimensions 166
 6.2.2 Shifting the center of gravity of the proof mass 167
 6.2.3 Varying the stiffness of the spring 169
 6.2.4 Applying strain to the structure 169
 6.3 Electrical Tuning Techniques 171
 6.4 Bandwidth Widening Strategies 173
 6.5 Conclusion 174
References 175

7 Piezoelectric Power-Harvesting Devices 177
 7.1 Flexible Piezoelectric Energy Harvesting from Jaw Movements 177
 7.2 Piezoelectric Shoe-Mounted Harvesters 178
 7.3 Piezo-Wind Generators 179
 7.4 Rotary Knee-Joint Harvester 179
 7.5 Piezoelectric Prosthetic-Leg Energy Harvesters 180
 7.6 Piezoelectric Pacemaker 180
 7.7 Piezoelectric Railways 180
 7.8 Piezoelectric Roads and Highways 180
 7.9 Flexible Wearable Harvester 181
 7.10 Rotating Energy Harvesters 181
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11 Water-Flow-Based Energy Harvester</td>
<td>182</td>
</tr>
<tr>
<td>7.12 Summary and Outlook</td>
<td>182</td>
</tr>
<tr>
<td>References</td>
<td>182</td>
</tr>
<tr>
<td>8 Ferroelectric Energy Harvesting</td>
<td>185</td>
</tr>
<tr>
<td>8.1 Energy Transfer in Pyroelectrics</td>
<td>186</td>
</tr>
<tr>
<td>8.1.1 Ferroelectric effect</td>
<td>187</td>
</tr>
<tr>
<td>8.1.2 Paraelectric effect</td>
<td>188</td>
</tr>
<tr>
<td>8.1.3 Phase transitions</td>
<td>188</td>
</tr>
<tr>
<td>8.1.4 Pyroelectric performance</td>
<td>189</td>
</tr>
<tr>
<td>8.2 Thermodynamic Cycles for Pyroelectric Energy Conversion</td>
<td>189</td>
</tr>
<tr>
<td>8.2.1 Heat and work fundamentals</td>
<td>190</td>
</tr>
<tr>
<td>8.2.2 Pyroelectric energy-harvesting efficiency</td>
<td>194</td>
</tr>
<tr>
<td>8.2.3 Carnot cycle</td>
<td>194</td>
</tr>
<tr>
<td>8.2.4 Ericsson cycle</td>
<td>196</td>
</tr>
<tr>
<td>8.2.5 Lenoir cycle</td>
<td>197</td>
</tr>
<tr>
<td>8.2.6 Pyroelectric energy conversion based on the Clingman cycle</td>
<td>198</td>
</tr>
<tr>
<td>8.2.7 Pyroelectric energy conversion based on the Olsen cycle</td>
<td>199</td>
</tr>
<tr>
<td>8.3 Recent Progress in Pyroelectric Energy Conversion and Harvesting</td>
<td>201</td>
</tr>
<tr>
<td>8.3.1 Pyroelectric energy harvesting based on the direct pyroelectric effect</td>
<td>201</td>
</tr>
<tr>
<td>8.3.2 Pyroelectric energy-harvesting figures of merit</td>
<td>202</td>
</tr>
<tr>
<td>8.3.3 Pyroelectric energy conversion based on thermodynamic cycles</td>
<td>220</td>
</tr>
<tr>
<td>8.4 Conclusion</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>225</td>
</tr>
<tr>
<td>9 Processing Important Piezoelectric Materials</td>
<td>233</td>
</tr>
<tr>
<td>9.1 Single Crystals</td>
<td>234</td>
</tr>
<tr>
<td>9.1.1 Growth of crystals from solution</td>
<td>234</td>
</tr>
<tr>
<td>9.1.2 Crystal growth from melt</td>
<td>236</td>
</tr>
<tr>
<td>9.1.3 High-temperature-flux method</td>
<td>237</td>
</tr>
<tr>
<td>9.1.4 Vertical-gradient-freeze method with no flux</td>
<td>238</td>
</tr>
<tr>
<td>9.2 Preparation of Ceramics</td>
<td>241</td>
</tr>
<tr>
<td>9.3 Thin-Film-Deposition Techniques</td>
<td>241</td>
</tr>
<tr>
<td>9.3.1 Non-solution-deposition techniques</td>
<td>242</td>
</tr>
<tr>
<td>9.3.1.1 Sputtering</td>
<td>242</td>
</tr>
<tr>
<td>9.3.1.2 Laser ablation</td>
<td>242</td>
</tr>
<tr>
<td>9.3.1.3 Chemical vapor deposition</td>
<td>243</td>
</tr>
<tr>
<td>9.3.2 Solution-deposition techniques</td>
<td>244</td>
</tr>
<tr>
<td>9.3.2.1 Sol-gel</td>
<td>244</td>
</tr>
<tr>
<td>9.3.2.2 Metal–organic deposition</td>
<td>246</td>
</tr>
<tr>
<td>9.3.2.2.1 Precursor synthesis</td>
<td>246</td>
</tr>
<tr>
<td>9.3.2.2.2 Solvent</td>
<td>247</td>
</tr>
</tbody>
</table>
Contents

9.3.2.2.3 Spin coating and pyrolysis 248
9.3.2.2.4 PZT films from MOD 249

9.4 Thick-Film Fabrication 250
9.4.1 Thick-film-transfer technology (screen printing) 250
9.5 Fabrication of Polymer–Ceramic Composites 251
References 253

10 Future Directions and Outlook 257
10.1 The Future of Power Harvesting: Drivers and Challenges 257
References 259

Appendix: MATLAB Codes 261
A.1 Euler—Bernoulli Clamped–Free Beam Modeling 261
A.2 Euler—Bernoulli Clamped–Free Unimorph Beam Modeling for Performance Parameters 263
A.3 Clamped–Clamped Beam Modeling for Performance Parameters 265
A.4 Clamped–Clamped Piezoelectric Cantilever Beam Modeling 267
A.5 Modeling the Performance Parameters of a PMN-PT Single Crystal with a Tip Mass Cantilever Beam 269
A.6 Modeling 2DOF Piezoelectric Vibrational Energy-Harvesting Parameters 272
A.7 Modeling 3DOF Piezoelectric Vibration Energy Harvesting 273
A.8 Modeling a 2DOF Cantilevered Beam System with Two Piezo Elements 274
A.9 Modeling a Thick Film Bonded to the Clamped End of an Aluminum Cantilever Beam 275

Index 279