Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air

Synchronous, asynchronous, in-wheel, outboard etc. Forecasts, technologies and players

Dr Peter Harrop and Dr Jon Harrop
IDTechEx
www.IDTechEx.com
Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS 1
 1.1. Scope of report 1
 1.2. Overview of markets and needs 1
 1.3. Many specific needs 2
 1.4. Common requirements 2
 1.5. Trends 2
 1.5.1. General 2
 1.5.2. Trend in motor types needed 2
 1.5.3. Trend in motors offered: synchronous, asynchronous, brushed 3
 1.6. Different requirements from pure electric vs hybrid EVs 4
 1.7. Regenerative braking considerations 4
 1.8. Reducing limitations: trend by type 4
 1.9. In-wheel motor adoption criteria 5
 1.9.1. In-wheel motors needed for envisioned sky taxis and personal VTOL aircraft 6
 1.10. Value chain becomes more complex 7
 1.11. Positioning of motor manufacturers 8
 1.12. Location of motor manufacturers 9
 1.13. Timelines of newly successful EVs 10
 1.14. Traction motor forecasts of numbers 11
 1.15. Global value market for vehicle traction motors 13
 1.16. Rapid increase in number of motors per vehicle 16
 1.16.1. Motor technology by type of vehicle 17
 1.16.2. Switched reluctance motors a disruptive traction motor technology? 18
 1.16.3. Three ways that traction motor makers race to escape rare earths 19
 1.17. Motor market value in 2015 and 2025 21
 1.18. Shape of motors 22
 1.19. Industry consolidation 22

2. INTRODUCTION 23
 2.1. Definitions 23
 2.2. Needs 23
 2.2.1. Traction motors are different 23
 2.2.2. Where different types of traction motor are popular 24
 2.3. Vertical integration 24
 2.4. Quadcopter drone motors and controls 25