Advances in Aircraft Landing Gear

R. Kyle Schmidt

SAE INTERNATIONAL

The aircraft landing gear system is relatively unique on board an aircraft—it is both structure and machine, supporting the aircraft on the ground, yet providing functions such as energy absorption during landing, retraction, steering, and braking.

Advances in Aircraft Landing Gear, edited by R. Kyle Schmidt, is a collection of eleven hand-picked technical papers that focus on the significant advancements that have occurred in this field concerning numeric modeling, electric actuation, and composite materials. Additionally, papers discussing self-powered landing gear and more electrical overall aircraft architectures have also been included.

The content of Advances in Aircraft Landing Gear is divided into two sections: Analysis and Design Methods; and Electric Actuation, Control, and Taxi, making it easier for the reader to find information quickly.

For those looking for additional knowledge on aircraft landing gears, the SAE A-5 committee (the Aerospace Landing Gear Systems Committee), serves as a useful forum for discussion on landing gear issues and development. A current listing of documents produced and maintained by this committee appears in the appendix of Advances in Aircraft Landing Gear.

R. Kyle Schmidt has twenty years of aircraft landing gear engineering experience garnered in Canada, France, and England. He has extensive exposure to the design, development, and in-service support of large civil aircraft landing gears, having been chief engineer for the A300/A310 family, A320 family, A330/A340 family, and A350 landing gears produced by Messier-Bugatti-Dowty.

With a degree in mechanical engineering from the University of Waterloo, Mr. Schmidt is a licensed professional engineer in the Province of Ontario. An accomplished inventor having been granted over twenty patents, Schmidt has also published a number of papers related to landing gear health monitoring and event detection.
Table of Contents

Introduction ... 1

Analysis and Design Methods.. 3
 - Landing Gear Design in the Conceptual Design Phase (1999-01-5523) 5
 - Sizing the Landing Gear in the Conceptual Design Phase (2000-01-5601) 15
 - An Automatic Procedure for the Landing Gear Conceptual Design of a
 Light Unmanned Aircraft (2013-01-2188) ... 23
 - An Investigation of Landing Gear Shimmy: Tire Models, Tire Test Methodologies,
 Analysis and Parameter Studies (1999-01-5527) ... 37
 - Aircraft Level Steering Runaway Failure Analysis (2009-01-3136) 65
 - Bird and Tyre Impact Analysis on Landing Gear (2013-01-9002) 71

Electric Actuation, Control, and Taxi .. 81
 - Examination of Aircraft Electric Wheel Drive Taxiing Concept (2008-01-2860) 83
 - Optimal Control Allocation for Electric Aircraft Taxi Systems: A Preliminary Study
 (2014-01-2137) .. 91
 - DRESS: Distributed and Redundant Electro-mechanical Nose Wheel Steering
 System (2009-01-3110) ... 101
 - More Electrical Actuation for ATA 32: Modular Power Electronics & Electrical
 Motor Concepts (2010-01-1745) ... 109
 - Hardware Design and Implementation of the Landing Gear Control Algorithm
 (2014-01-2186) .. 115

Appendix .. 125

About the Editor ... 129
Advances in Aircraft Brakes and Tires

R. Kyle Schmidt
Table of Contents

Introduction ... 1

Tires .. 3

 Mechanical Properties of Radial-Ply Aircraft Tires (2005-01-3438) ... 5
 Hydroplaning of H-Type Aircraft Tires (2004-01-3119) ... 19

Control Systems .. 27

 A Sliding Mode Observer Based ABS for Aircraft and Land Vehicles (2003-01-0252) 39
 Braking Systems with New IMA Generation (2011-01-2662) ... 47

Brakes ... 53

 Predicting Landing Gear Carbon Brake Vibration and Performance via Subscale Test and Analysis (2005-01-3437) ... 55
 Adsorption and Desorption Effects on Carbon Brake Material Friction and Wear Characteristics (2005-01-3436) ... 65
 Reducing Aircraft Brake Squeal with a Damped Brake-Rod (2000-01-5599) 83
 Asymmetric Approach in Solving Aircraft Brake Vibration (2002-01-2948) 87
 The Effect of Wear Groove on Vibration and Noise of Aircraft Brakes: Theoretical and Experimental Evidence (2008-01-2557) ... 95
 Aircraft Electric Brakes - Technical Development (2002-01-2946) ... 103

Appendix .. 113

About the Editor ... 117