CHAPTER 1

Technical Parameters for the Determination of Impact Speed for Motorcycle Accidents and the Importance of Relative Speed on Injury Severity

Introduction and Objectives
Historical View on In-Depth Studies Describing the Injury Situation of Motorcyclists
Possibilities of In-Depth Research
Basis for Reconstruction
Basis for Statistics
Basis for the Study
Kinematics of Motorcycle Accidents
Collision and Injury Situations of Motorcyclists
Throwing Distance, Relative Speed, and Severity of Injury
Severity of Secondary Collision
Conclusions
References

CHAPTER 2

Driver-Control Interaction of a Curve-Safe Braking Control for Motorcycles

Introduction
Simulator
Vehicle Model
Steering Model
Brake-Control Strategy
Analysis
Tractability
Stability
Conclusion
References
CHAPTER 3

Motorcycle Rider Trajectory in Pitch-Over Brake Applications and Impacts

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>34</td>
</tr>
<tr>
<td>Crash Test</td>
<td>36</td>
</tr>
<tr>
<td>Test Design</td>
<td>36</td>
</tr>
<tr>
<td>Results</td>
<td>37</td>
</tr>
<tr>
<td>Video Analysis</td>
<td>39</td>
</tr>
<tr>
<td>Sled Tests</td>
<td>40</td>
</tr>
<tr>
<td>Test Fixture Design</td>
<td>40</td>
</tr>
<tr>
<td>Braking Simulation Development</td>
<td>42</td>
</tr>
<tr>
<td>Results</td>
<td>43</td>
</tr>
<tr>
<td>Video Analysis</td>
<td>45</td>
</tr>
<tr>
<td>Analysis</td>
<td>46</td>
</tr>
<tr>
<td>Conclusions</td>
<td>51</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>52</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

CHAPTER 4

Occupant Trajectory Model using Case-Specific Accident Reconstruction Data for Vehicle Position, Roll, and Yaw

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>Methods</td>
<td>56</td>
</tr>
<tr>
<td>Vehicle Model</td>
<td>57</td>
</tr>
<tr>
<td>Reference Frames</td>
<td>57</td>
</tr>
<tr>
<td>Initial Conditions</td>
<td>58</td>
</tr>
<tr>
<td>Equations of Motion</td>
<td>59</td>
</tr>
<tr>
<td>Occupant Model</td>
<td>59</td>
</tr>
<tr>
<td>Occupant in Vehicle</td>
<td>60</td>
</tr>
<tr>
<td>Occupant in Air</td>
<td>61</td>
</tr>
<tr>
<td>Occupant on Ground</td>
<td>63</td>
</tr>
<tr>
<td>Results</td>
<td>63</td>
</tr>
<tr>
<td>Discussion</td>
<td>68</td>
</tr>
<tr>
<td>Conclusion</td>
<td>70</td>
</tr>
<tr>
<td>References</td>
<td>71</td>
</tr>
</tbody>
</table>
CHAPTER 5

Motorcycle Tire/Road Friction 73

- Introduction 74
- Review of Previous Investigations 74
- Test Procedure 75
- Results 77
- Effects of Severe Wear 81
- Conclusions and Discussion 82
- References 83
- Acknowledgments 84
- Appendix 85
 - Data From Dry-Urface Tests 85
 - Data From Wet-Surface Tests 89

CHAPTER 6

Full-Scale Moving-Motorcycle-into-Moving-Car Crash Testing for Use in Safety Design and Accident Reconstruction 95

- Introduction 96
- Crash Test Methodology 99
 - Test Facility 99
 - Motorcycle Dolly 100
 - Speed Control 102
 - Impact Control 103
- Test Design 104
 - Test 1 104
 - Test 2 105
 - Test 3 106
 - Test 4 107
- Analysis 109
 - Impact 109
 - Deformation and Motion 109
 - Moving Motorcycle into Stationary Car 109
 - Moving Motorcycle into Moving Car—Test 1 113
 - Moving Motorcycle into Moving Car—Test 2 116
 - Moving Motorcycle into Moving Car—Test 3 119
 - Moving Motorcycle into Moving Car—Test 4 120
- Summary 124
CHAPTER 7

Simulating Moving Motorcycle to Moving Car Crashes

Introduction 130
Simulation Software 131
Crash Tests 131
Crash Test Simulations 133
Test 1 Analysis 133
Vehicle Models 133
Environment 135
Test 1 Simulations 135
Test 1 Simulation Summary 138
Test 2 Analysis 139
Vehicle Models 139
Environment 139
Test 2 Simulation 139
Test 2 Simulation Summary 141
Test 3 Analysis 142
Vehicle Models 142
Environment 143
Test 3 Simulation 143
Test 3 Simulation Summary 146
Test 4 Analysis 149
Vehicle Models 149
Environment 149
Test 4 Simulation 149
Test 4 Simulation Summary 154
Discussion & Conclusions 154
References 155
Acknowledgments 156
Appendix 157
Vehicle Data 157
CHAPTER 10

Accident Characteristics and Influence Parameters of Severe Motorcycle Accidents in Germany

Introduction and Objectives
Legal Regulation of Motorcycles in Germany
Accident Studies Based on GIDAS (German In-Depth Accident Study)
Database
Evaluation Structure of the Study
Injury Severity
Accident Situation and Causes of Injury by Types of Accidents
Collision Partners of Heavy Motorcycles and Closing Speed
Cubic Capacity of Motorcycles
Rider Individual Parameters (Age, Body Weight, Body Height, BMI)
Collision Type and Injury Severity
Multivariate Analysis
Conclusion and Discussion
References
Acknowledgments

CHAPTER 11

The Effects of Power Interruption on Electronic Needle-Display Motorcycle Speedometers

Introduction
Testing Details
 Power Interruption Testing
 Speedometer Drop Testing
Test Results
1999 Harley Davidson FXDX
2013 Harley Davidson FLTRU
2015 Honda GL1800 Gold Wing
2015 BMW R1200GS
2014 Triumph T100 Bonneville
2012 Kawasaki ZX-14R Ninja
CHAPTER 12

Testing Methodology to Evaluate Reliability of a “Frozen” Speedometer Reading in Motorcycle/Scooter Impacts with Preimpact Braking

Introduction 222

History of Speedometer Technology 222

Literature Review 224

Speedometer Examination: An Aid in Accident Investigation, FBI Law Enforcement Bulletin, 65920, 1980 224

Post-Collision Speedometer Readings and Vehicle Impact Speeds, Collision Magazine, 2010 224

Reliable Determination of Impact Velocity on the Basis of Indications of the Speedometer Stopped After the Collision, International Scientific Conference, 2009 225

A Review of Speedometers and the Criteria to be Considered Before Accepting ‘Frozen’ Readings and Other Marks, EVU 2013-27, 2011 225

An Assessment of Speedometers Using Stepper Motors to Hold Their Position during High Speed Impact Testing, ITAI Conference Proceedings, 2014 225

The Behaviour of Instrument Clusters during High-Speed Crash Testing, EVU 2015 226

Accuracy of Retained Speedometer Readings, ITAI Conference Proceedings, 2014 226

Testing Process for Evaluating the Reliability of a “Frozen” Motorcycle Speedometer Needle Reading 226

Step 1—Identification of Gauge Needle Motor Type 227

Step 2—Evaluation of Speedometer Needle Resistance 228

Step 3—Gauge Needle Latency 229

Confirmed Stepper Motor Results 230

1. 2008 Harley Davidson Heritage Softail Classic FLSTCI 231
2. 2014 Harley Davidson Heritage Softail FLSTC103 232
3. 2015 Harley Davison Street Glide Special FLHXS 232

Chapter 13

Video Analysis of Motorcycle and Rider Dynamics During High-Side Falls

<table>
<thead>
<tr>
<th>Case</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>248</td>
</tr>
<tr>
<td>#2</td>
<td>251</td>
</tr>
<tr>
<td>#3</td>
<td>254</td>
</tr>
<tr>
<td>#4</td>
<td>255</td>
</tr>
</tbody>
</table>

Speed Analysis from Audio Data

| |
| 256 |

Discussion and Conclusions

| |
| 257 |

References

| |
| 260 |

Acknowledgments

| |
| 260 |

About the Author

| |
| 261 |