contents

CHAPTER 1	
Introduction	1
Sensing Techniques for SHM	2
Signal Processing of SHM Data	3
Aerospace Applications of SHM	4
References	6
	•
CHAPTER 2	
Next Generation Manufacturing Fixture	es:
CFRP Structures Using "In Situ"	
Health Monitoring	9
Introduction	10
Materials and Methods	11
CFRP Fixture Base Frame	11
Design Criteria	11
Manufacturing	11
Optical Measurement System	12
Fiber Bragg Gratings (FBGs)	12
Interrogator Equipment	13
FBG Measurement Sensitivity	13
Temperature Compensation of the FBG	13
Coating Tests of Optical Fiber	14
The Test Object	14
Load Case	14
Results and Discussion	15
Calculations	15
Measurements	15
Top of the Beam	15
The Side of the Beam	15
Summary	16
Future Work	16
Acknowledgments	17
Contact Information	17
References	17

© 2018 SAE International

	V. W		
 - 1	7 ^ W	1 - 1 - 3	

References

CHAPTER 3	
Discrimination between Damaging and	
Non-damaging Impact Events on Composite	
Structure Using SHM Sensor Signal Analysis	19
Introduction	19
Experimental Approach	20
Experimental Results	21
Impact Damage Classification Based On Sensor Signal	00
Characteristics Summary/Conclusions	22 23
References	23 24
Contact Information	24
Acknowledgments	24
, total of the agricults	
CHAPTER 4	
Detecting Damage and Damage Location on	
	~=
Large Composite Parts Using RFID Technology	25
Introduction	26
Presentation of the Solution	26
Acoustic Ultrasonic	27
Technology/Application Discriminators	27
Technology Inhibitors	27
Accelerometers Technology/Application Discriminators	28 28
Technology/Application Discriminators Technology Inhibitors	28
Radio Frequency (RF) Sensors (Shock Vibration)	28
Technology/Application Discriminators	28
Technology Inhibitors	28
Technology Tests	28
Sensor Positioning/Location	31
Acoustic Ultrasonic	31
Accelerometers	31
Radio Frequency (RF) Sensors (Shock Vibration)	32
Test Results	32
Acoustic Ultrasonic	32
Accelerometers Radio Frequency (RF) Sensors (Shock Vibration)	33 34
Conclusions and Recommendations	36
Acknowledgments	36

36

vii

55

		170	-		
G F	IVAN	H		ы	- 5

Signal Processing Strategies Using	
Micro-Systems for <i>In Situ</i> Health Monitori	ng
of Aircraft	39
Introduction	39
Overview of Current SHM Technologies	40
Sensing Strategies	4
Signal Processing Strategies	42
Implementation of In Situ Monitoring	43
System Configuration	43
Subband Filtering Techniques	44
Formulation of the Problem	44
Single Degree-of-Freedom Systems	44
Multiple Degrees-of-Freedom Systems	45
Implementation of the Strategy	45
Modeling Tools	45
Subband Time-Frequency Model	46
Mechanical Interpretation of the Model	46
On-Line Identification	46
Experimental Validation	47
Experimental Setup	47
Preliminary Results	48
Conclusion	49
Acknowledgments	49
References	49
Contact	50
CHAPTER 6	
Vibration Response and Damage Detecti	on
of Carbon/Epoxy Beams at Elevated	
Temperatures Using the Hilbert-Huang	
Transform	51
Introduction	52
Hilbert-Huang Transform	53
Description of Composite Test Beams	54
Experimental Method	55
Experimental Netrod	5:

Data Acquisition System

Results and Discussion	56
Modal Characteristics	56
Intrinsic Mode Functions	56
Summary/Conclusions	60
References	61
CHAPTER 7	
Structural Health Monitoring in Civil Aviation:	
Applications and Integration	63
Introduction	64
Fatigue Monitoring	64
Fatigue Damage Sensing	67
Summary	70
References	7 1
CHAPTER 8	
Demonstration of a Structural Damage	
Detection System in Fast Jet Flight Trials	73
Introduction	73
Description of the Flight Test Installation	74
Flight Clearance Requirements	75
Flight Test Program	76
Results from the Flight Test	76
Conclusion	78
Acknowledgments	78
References	78
CHAPTER 9	
Embedded Fiber Optic Sensors for	
High-Strain Composite Components	79
Introduction	80
Phase 1 Optical Fiber Embedment	81
Fiber Optic Strain Sensor System	82
Time-Domain Multiplexing	82
Test Coupon	82
Mold	83
Optical Fiber Ingress/Egress	83

Con	tent	S	

83

83 83

84

84

85

85

85

86

87

87

88

88

88

89

89

92

92

93

93

94

95

95

96

96

97

ix

CHAPTER 10

Composite Structural Health Monitoring for Male UAV Application

Test Coupon Layup and Cure

Layup

Phase 1 Results

Cure Monitoring

Fatigue Testing

Specimen 5

Specimen 5

Acknowledgments

Definitions/Abbreviations

Conclusions

References

Temperature Studies

Optical Fibers

Phase 1 Conclusions

Specimen Design and Build

Sensor Calibrations

Specimens 1 and 2

Specimens 3 and 4

Specimens 3 and 4

Preparation of the Optical Fiber

Phase 2 Testing Embedded Specimens

Extracting Strain due to Flapping

Temperature Compensation Conclusions

Post-Test Summary: Destructive

Extracting Strain due to CF and Temperature

Introduction	97
Application Scenario	98
Project Scenario	98
SHM State of the Art and Address	98
Requirements	100
Methodology	100
Results	101
Numerical Approach	101
Experimental Approach	102
Damage Identification	104
Summary/Conclusions	105
References	105

Contact Information	106
Acknowledgments	107
Definitions/Abbreviations	107
Appendix	108
Appendix 1	108

CHAPTER 11

Intelligent Flexible Materials for Deploya	able
Space Structures (InFlex)	109
Introduction	109
Goals and Objectives of the Program	111
Configuration Analysis	113
Research Results	114
Health Monitoring System	114
Breakpoint Detection	116
Tomography Systems	118
Communications Systems	118
HMS Parasitic Mass Assessment	119
Display and Warning System	119
Self-Healing Materials	120
Low-Permeation Materials	122
Antimicrobial Functionality	123
Power Generation and Storage	125
Radiation Protective Materials	126
Conclusion	127
Acknowledgments	128
References	128
Contact	129
About the Author	131