CHAPTER 1
The Development of Safety Cases for an Autonomous Vehicle: A Comparative Study on Different Methods

Introduction
Vehicle Layout and ISO26262
Vehicle Control System and Propulsion System
ISO26262 Road Vehicle Functional Safety Standard
Failure Model and Effects Analysis Method
Goal Structuring Notation Method
Safety Case Development
Case Study
Conclusions
Contact Information
Acknowledgments
Definitions/Abbreviations
References

CHAPTER 2
A Means of Assessing the Entire Functional Safety Hazard Space

Introduction
Background
Related Work
Overview of Hazard Space Analysis (HSA)
HSA Notation Format
Generation of Hazard Space
Partitioning of a Single-Caused Hazard Space
Safety Rules from Hazard Scenarios
CHAPTER 3

A Model-Driven Approach for Dependent Failure Analysis in Consideration of Multicore Processors Using Modified EAST-ADL

Introduction 36
Description of the Approach 37
Approach of System and Safety Modeling 37
Approach of DFA-Analysis 39
A. Necessary Developments of EAST-ADL for the DFA Analysis 40
B. Description of DFA-Analysis and Safety Analysis 42
C. Use-Case and Reports 44
Conclusions 45
Contact Information 45
Acknowledgments 45
References 46

CHAPTER 4

An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software 47
Introduction 47
Background 48
ISO 26262 48
Machine Learning 49
Non-Transparency 50
Error Rate 50
Training-Based 50
Instability 50
Contents

Analysis of ISO 26262
Identifying Hazards 51
Faults and Failure Modes
Recommendations for ISO 26262 51
Specification and Verification
Recommendations for ISO 26262 52
Level of ML Usage
Recommendations for ISO 26262 53
Required Software Techniques
Recommendations for ISO 26262 54
Summary and Conclusion 56
Identifying Hazards 56
Fault and Failure Modes 56
Specification and Verification 56
The Level of ML Usage 56
Required Software Techniques 57
Acknowledgment 57
References 57

SOTIF PAPERS

CHAPTER 5

Introduction 62
SOTIF HARA and State Space Explosion 63
HARA Composition 63
Hazards 63
Use Cases 63
HARA and the Hidden Semi-Markov Chain 64
Restructuring of Risk-Generating Process 65
Automatic Emergency Braking (AEB) Example 66
Markov Chain Solution 66
Regions of the Transition Matrix 67
Is There Another Way to Do It? 68
Summary 69
Outlook 69
Contents

Contact Information 69
Definitions/Abbreviations 69
References 70

CHAPTER 6

The Science of Testing: An Automotive Perspective 71

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>Understanding Scenarios</td>
<td>73</td>
</tr>
<tr>
<td>Types of Testing</td>
<td>74</td>
</tr>
<tr>
<td>Methodology</td>
<td>75</td>
</tr>
<tr>
<td>Participants</td>
<td>75</td>
</tr>
<tr>
<td>Interview Questions Design</td>
<td>76</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>76</td>
</tr>
<tr>
<td>First Cycle Coding</td>
<td>77</td>
</tr>
<tr>
<td>Second Cycle Coding and Category Identification</td>
<td>77</td>
</tr>
<tr>
<td>Results</td>
<td>78</td>
</tr>
<tr>
<td>Discussion</td>
<td>79</td>
</tr>
<tr>
<td>Conclusion</td>
<td>80</td>
</tr>
<tr>
<td>Contact Information</td>
<td>81</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td>81</td>
</tr>
</tbody>
</table>

MULTI-AGENT SAFETY PAPERS

CHAPTER 7

Theory of Collision Avoidance Capability in Automated Driving Technologies 85

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td>Definition of Normal Driving</td>
<td>88</td>
</tr>
<tr>
<td>Requisite Sensing Range</td>
<td>88</td>
</tr>
<tr>
<td>Operational Design Domain</td>
<td>89</td>
</tr>
<tr>
<td>Formulation of Collision Avoidance in the Semantic Level</td>
<td>90</td>
</tr>
<tr>
<td>Candidate Path Matrix</td>
<td>90</td>
</tr>
<tr>
<td>Collision Avoidance by Lane Selection</td>
<td>91</td>
</tr>
<tr>
<td>Timing Tensor</td>
<td>91</td>
</tr>
</tbody>
</table>
Collision Avoidance Equation 92
Collision Avoidance in Normal Driving 92
Collision Avoidance in Normal Driving 93
Preparation and Response to Hazard 93
Preparation and Response to Cognitive Hazard 93
Preparation and Response to Behavioral Hazard 94
Behavior Analysis in Extreme Traffic Situations/Hazards 97
Stability of Extreme Condition 98
Trace-Back of Traffic Environment and Stability 98
Summary of Forward and Backward Analysis 100
Discussion 100
Summary/Conclusion 101
Contact Information 102
Acknowledgments 102
References 102

CHAPTER 8

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field 105

Introduction 106
Acceleration Field 107
Braking Safety Distance Model 107
Acceleration Field for Intention Generating 110
Acceleration Field for Feasibility Judgement 111
Complete Acceleration Field 111
Basic Lane-Changing Decision-Making Method 112
Braking Decision-Making Method 113
Basic Lane-Changing Decision-Making Method 114
Lane-Changing Assumptions and Simplifications 114
Analysis of Lane-Changing Process 114
Decision-Making Method 116
Extended Lane-Changing Decision-Making Method 117
Inspection on Rear Side Traffic Vehicle 117
Extended Method with Velocity Regulation 117
Simulation with Polynomial Trajectory Planning 119
Summary 122
Contact Information 122
Acknowledgments 123
References 123