Chapter 1

Lane-Kee- ping Behavior and Cognitive Load with Use of Lane Departure Warning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Methods</td>
<td>3</td>
</tr>
<tr>
<td>Participants</td>
<td>3</td>
</tr>
<tr>
<td>Materials</td>
<td>3</td>
</tr>
<tr>
<td>Procedure</td>
<td>4</td>
</tr>
<tr>
<td>Data Processing & Analysis</td>
<td>5</td>
</tr>
<tr>
<td>Lane Keeping</td>
<td>5</td>
</tr>
<tr>
<td>Cognitive Load</td>
<td>6</td>
</tr>
<tr>
<td>Results</td>
<td>6</td>
</tr>
<tr>
<td>Lane Keeping</td>
<td>6</td>
</tr>
<tr>
<td>Cognitive Task Performance</td>
<td>7</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Contact Information</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
</tbody>
</table>

Chapter 2

Study on Test Scenarios of Environment Perception System under Rear-End Collision Risk

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>14</td>
</tr>
<tr>
<td>Materials and Processing</td>
<td>15</td>
</tr>
<tr>
<td>Extraction of Real Naturalistic Traffic</td>
<td>15</td>
</tr>
<tr>
<td>Rear-End Risk Scenarios</td>
<td>15</td>
</tr>
<tr>
<td>Study of Dangerous Level of Risk Scenarios</td>
<td>16</td>
</tr>
<tr>
<td>Methods</td>
<td>16</td>
</tr>
<tr>
<td>Environment Perception Elements (EPEs) Considered in Analysis</td>
<td>16</td>
</tr>
</tbody>
</table>
Contents

Probability Distribution of EPEs 17
 Weather and Light Conditions 17
 Road Features and Road Markings 18
 Traffic Signs 18
 Traffic Lights 19
 Other Vehicles, Pedal Cyclists and Pedestrians 19
 Others 19

Study of the Correlation between EPEs and Dangerous Level of Risk Scenarios 20

Generation of Test Scenarios for EPS 20

Results 21
Discussion 23
Conclusions 24
Contact Information 24
Acknowledgments 24
References 25

CHAPTER 3

Motion Planning of Vehicle Obstacle Avoidance in Complex Traffic Scenarios 27

Introduction 28
System Architecture 29
General Driving Risk Model 30
 Collision Risk Model 30
 Real-Time Collision Detection 30
 Collision Risk 30
 Non-Collision Risk Model 32
 Violating Traffic Regulations Risk 32

Motion Planning and Control 33
 Minimum Risk Search Algorithm 33

Experimental Results and Discussions 35
 Experimental Scenarios 35
 Results and Analysis 37

Conclusions 38
Contact Information 39
Acknowledgments 39
Abbreviations 39
References 39
CHAPTER 4

Driver Behavior While Operating Partially Automated Systems: Tesla Autopilot

<table>
<thead>
<tr>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction 43</td>
</tr>
<tr>
<td>Methodology 44</td>
</tr>
<tr>
<td>Participants 45</td>
</tr>
<tr>
<td>Study Design 45</td>
</tr>
<tr>
<td>Journaling 45</td>
</tr>
<tr>
<td>Observation 45</td>
</tr>
<tr>
<td>Interview 45</td>
</tr>
<tr>
<td>Procedure 45</td>
</tr>
<tr>
<td>Results 46</td>
</tr>
<tr>
<td>Qualitative Data 46</td>
</tr>
<tr>
<td>Autopilot Understanding and Usage Situations 46</td>
</tr>
<tr>
<td>System Expectations 46</td>
</tr>
<tr>
<td>Initial Exposure 46</td>
</tr>
<tr>
<td>Effect of Autopilot Accident on Driver Behavior 46</td>
</tr>
<tr>
<td>Behavior Analysis 47</td>
</tr>
<tr>
<td>Eye Glance Analysis 47</td>
</tr>
<tr>
<td>Hands-On/Off Steering Wheel 50</td>
</tr>
<tr>
<td>On-Highway/Off-Highway Autopilot Usage 50</td>
</tr>
<tr>
<td>Tasks Performed While Autopilot Is Active 50</td>
</tr>
<tr>
<td>Summary/Conclusions 51</td>
</tr>
<tr>
<td>Study Limitations 51</td>
</tr>
<tr>
<td>References 51</td>
</tr>
</tbody>
</table>

CHAPTER 5

Forward Collision Warning: Clues to Optimal Timing of Advisory Warnings

| Forward Collision Warning: Clues to Optimal Timing of Advisory Warnings |
|-----------------------------|-----------------------------|
| Introduction 53 |
| Methods 54 |
| Sample 55 |
| Procedure and Design 55 |
| Measures and Statistical Analyses 56 |
| Assessments of Functioning 56 |
| Driving Performance Measures 56 |
CHAPTER 6
Situation Awareness, Scenarios, and Secondary Tasks: Measuring Driver Performance and Safety Margins in Highly Automated Vehicles 65
Introduction 66
Types and Levels of Automation 66
Failure Modes of Driver-Automation Interaction 67
Driving Simulator Protocol 68
Latent Hazards to Assess Situation Awareness 69
Secondary Task Engagement 70
Measures of Driver Performance and Safety Margins 72
Conclusion 72
Contact Information 73
Acknowledgments 73
References 73

CHAPTER 7
Frontal Collisions—What Are the Limitations of Future Forward-Looking Safety Systems? 77
Introduction 78
Limitations of Current and Future Pre-crash Systems 78
One Dimensional Example 79
Moving to Two Dimensions 82
Limiting Trajectories and Sampling in between 84
What Are the Problems? 85
What Can Be Done 89
Summary/Conclusions 90
Contact Information 90
Definitions/Abbreviations 90
References 90
CHAPTER 8
Hardware-in-the-Loop (HIL) Implementation and Validation of SAE Level 2 Autonomous Vehicle with Subsystem Fault Tolerant Fallback Performance for Takeover Scenarios 93

Introduction 94
Hardware-in-the-Loop (HIL) Simulation 97
HIL Hardware 98
Engine Control Module (ECM) 98
Hybrid Control Module (HCU) 99
Gear Shift Module (GSM) 99
Transmission Range Control Module (TRCM) 100
Gateway Module (GWM) 100
Microautobox (MABX) 100
HIL Modeling 100
Automated Longitudinal Control 101
Automated Lateral Control 103
HIL SAE Level 2 Automation 106
Simulations and Test Results 110
Automated Longitudinal Control Simulations & Test Results 112
Automated Lateral Control Simulations & Test Results 114
Subsystem Faults and Fallback Performance Simulation & Test Results 116
Conclusions 119
Contact Information 122
Abbreviations 122
References 123

CHAPTER 9
Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads 127

1. Introduction 128
2. System Description 130
 2.1 System Fundamentals 130
 2.2 The Basic Structure of the System 130
 2.3 Basic Process of the System 131
Contents

3. Modeling and Constraints

3.1 Designed Highway Speed Limit in Mountainous Area

3.1.1 Design Speed of Downhill Section in Mountainous Area
3.1.2 Highway Speed Limit

3.2 Vehicle Dynamics Modeling of Commercial Vehicles on Downhill

3.2.1 Ramp Brake Model
3.2.2 Weight Model

3.3 Brake Temperature Rise Model

3.3.1 Energy Analysis of Downhill Section
3.3.2 Analysis of Brake Temperature Rise

4. Case Studies and Simulations

4.1 The Main Parameters of the Target Vehicle Model
4.2 Safety Speed Simulation of Downhill Section
4.3 Influence of Vehicle Weight on Slope Top Safety Speed
4.4 Brake Temperature Rise Comparison

5. Conclusion

References

Definitions/Abbreviations

CHAPTER 10

Overtaking or Merging? Eco-Routing Decision and Speed Trajectory with Full Terrain Information

Introduction
Vehicle Dynamic Model
Optimization Constraints
Internal Constraints
External Constraints
Platoons Initial State
Overtaking Safety

Motion Planning Algorithm
Discrete Dynamic Programming (DP)
Introduction to DP
Forward Discrete DP
Cost Function
Model Predictive Control (MPC) and Linear Quadratic Regulator (LQR) 156
 Linear Quadratic Regulator (LQR) 156
 Model Predictive Control (MPC) 156
Simulation Results 157
 Unconstrained Speed Trajectories vs. Uniform Motion 157
 Constrained vs. MPC and LQR 157
 One Preceding Platoon 158
 Two Preceding Platoons 159
 Three Preceding Platoons 161
Sensitivity Analysis 162
 Influence of Initial Speed on Optimal Trajectories 162
Conclusion 163
Contact Information 164
Acknowledgments 164
References 164
Epilogue 167