List of Chapters:

Chapter 1 — INTRODUCTION
 Dawn of the Motor Vehicle Age
 Introduction to Vehicle Dynamics
 Fundamental Approach to Modeling
 Lumped Mass
 Vehicle Fixed Coordinate System
 Motion Variables
 Earth Fixed Coordinate System
 Euler Angles
 Forces
 Newton’s Second Law
 Dynamic Axle Loads
 Static Loads on Level Ground
 Low-Speed Acceleration
 Loads on Grades
 Example Problems
 References

Chapter 2 — ACCELERATION PERFORMANCE
 Power-Limited Acceleration
 Engines
 Power Train
 Automatic Transmissions
 Example Problems
 Traction-Limited Acceleration
 Transverse Weight Shift due to Drive Torque
 Traction Limits
 Example Problems
 References

Chapter 3 — BRAKING PERFORMANCE
 Basic Equations
 Constant Deceleration
 Deceleration with Wind Resistance
 Energy/Power
 Braking Forces
 Rolling Resistance
 Aerodynamic Drag
 Driveline Drag
 Grade
 Brakes
 Brake Factor
 Tire-Road Friction
 Velocity
 Inflation Pressure
 Vertical Load
 Example Problems
 References

Chapter 4 — ROAD LOADS
 Aerodynamics
 Mechanics of Air Flow Around a Vehicle
 Pressure Distribution on a Vehicle
 Aerodynamic Forces
 Drag Components
 Aerodynamics Aids
 Bumper Spoilers
 Air Dams
 Deck Lid Spoilers
 Window and Pillar Treatments
 Optimization
 Drag
 Air Density
 Drag Coefficient
 Side Force
 Lift Force
 Pitching Moment
 Yawing Moment
 Rolling Moment
 Crosswind Sensitivity
 Rolling Resistance
 Factors Affecting Rolling Resistance
 Tire Temperature
 Tire Inflation Pressure/Load
 Velocity
 Tire Material and Design
 Tire Slip
 Typical Coefficients
 Total Road Loads
 Fuel Economy Effects
 Example Problems
 References
Chapter 5 — RIDE

Excitation Sources
- Road Roughness
- Tire/Wheel Assembly
- Driveline Excitation
- Engine/Transmission

Vehicle Response Properties
- Suspension Isolation
- Example Problem
- Suspension Stiffness
- Suspension Damping
- Active Control
- Wheel Hop Resonances
- Suspension Nonlinearities
- Rigid Body Bounce/Pitch Motions
- Bounce/Pitch Frequencies
- Special Cases
- Example Problem

Perception of Ride
- Tolerance to Seat Vibrations
- Other Vibration Forms

Conclusion

References

Chapter 6 — STEADY-STATE CORNERING

Introduction
- Low-Speed Turning
- High-Speed Cornering
 - Tire Cornering Forces
 - Cornering Equations
 - Understeer Gradient
 - Characteristic Speed
 - Critical Speed
 - Lateral Acceleration Gain
 - Yaw Velocity Gain
 - Sideslip Angle
 - Static Margin

Suspension Effects on Cornering
- Roll Moment Distribution
- Camber Change
- Roll Steer
- Lateral Force Compliance Steer
- Aligning Torque
- Effect of Tactive Forces on Cornering

Summary of Understeer Effects

Experimental Measurement of Understeer
 - Gradient
 - Constant Radius Method
 - Constant Speed Method

Example Problems

References

Chapter 7 — SUSPENSIONS

Solid Axles
- Hotchkiss
- Four Link
- De Dion

Independent Suspensions
- Trailing Arm Suspension
- SLA Front Suspension
- MacPherson Strut
- Multi-Link Rear Suspension
- Trailing-Arm Rear Suspension
- Semi-Trailing Arm
- Swing Axle

Anti-Squat and Anti-Pitch Suspension Geometry
- Equivalent Trailing Arm Analysis
- Rear Solid Drive Axle
- Independent Rear Drive
- Front Solid Drive Axle
- Independent Front-Drive Axle
- Four-Wheel Drive

Anti-Dive Suspension Geometry

Example Problems

Roll Center Analysis
- Solid Axle Roll Centers
 - Four-Link Rear Suspension
 - Three-Link Rear Suspension
 - Four-Link with Parallel Arms
 - Hotchkiss Suspension
 - Independent Suspension Roll Centers
 - Positive Swing Arm Geometry
 - Negative Swing Arm Geometry
 - Parallel Horizontal Links
 - Inclined Parallel Links
 - MacPherson Strut
 - Swing Axle

Active Suspensions
- Suspension Categories
- Functions
- Performance

References
Chapter 8 — THE STEERING SYSTEM

Introduction
The Steering Linkages
Steering Geometry Error
 Toe Change
 Roll Steer
Front Wheel Geometry
Steering System Forces and Moments
 Vertical Force
 Lateral Force
 Tractive Force
 Aligning Torque
 Rolling Resistance and Overturning Moments
Steering System Models
Examples of Steering System Effects
 Steering Ratio
 Understeer
 Braking Stability
Influence of Front-Wheel Drive
 Driveline Torque About the Steer Axis
 Influence of Tractive Force on Tire
 Cornering Stiffness
 Influence of Tractive Force on Aligning Moment
Fore/Aft Load Transfer
Summary of FWD Understeer Influences
Four-Wheel Steer
 Low-Speed Turning
 High-Speed Cornering
References

Chapter 10 — TIRES

Tire Construction
Size and Load Rating
Terminology and Axis System
Mechanics of Force Generation
Tractive Properties
 Vertical Load
 Inflation Pressure
 Surface Friction
 Speed
 Relevance to Vehicle Performance
Cornering Properties
 Slip Angle
 Tire Type
 Load
 Inflation Pressure
 Size and Width
 Tread Design
 Other Factors
 Relevance to Vehicle Performance
Camber Thrust
 Tire Type
 Load
 Inflation Pressure
 Tread Design
 Other Factors
 Relevance to Vehicle Performance
Aligning Moment
 Slip Angle
 Path Curvature
 Relevance to Vehicle Performance
Combined Braking and Corning
 Friction Circle
 Variables
 Relevance to Vehicle Performance
Conicity and Ply Steer
 Relevance to Vehicle Performance
Durability Forces
 Tire Vibrations
References

Appendix A — SAE J670e - Vehicle Dynamics Terminology

Appendix B — SAE J6a - Ride and Vibration Data Manual

Index