List of Chapters:

Nomenclature

Chapter 1 Introduction to the Two-Stroke Engine
1.0 Introduction to the two-stroke cycle engine
1.1 The fundamental method of operation of a simple two-stroke engine
1.2 Methods of scavenging the cylinder
 1.2.1 Loop scavenging
 1.2.2 Cross scavenging
 1.2.3 Uniflow scavenging
 1.2.4 Scavenging not employing the crankcase as an air pump
1.3 Valving and porting control of the exhaust, scavenge and inlet processes
 1.3.1 Poppet valves
 1.3.2 Disc valves
 1.3.3 Reed valves
 1.3.4 Port timing events
1.4 Engine and porting geometry
 1.4.1 Swept volume
 1.4.2 Compression ratio
 1.4.3 Piston position with respect to crankshaft angle
 1.4.4 Computer program, Prog.1.1, PISTON POSITION
 1.4.5 Computer program, Prog.1.2, LOOP ENGINE DRAW
 1.4.6 Computer program, Prog.1.3, QUB CROSS ENGINE DRAW
1.5 Definitions of thermodynamic terms used in connection with engine design and testing
 1.5.1 Scavenge ratio and delivery ratio
 1.5.2 Scavenging efficiency and purity
 1.5.3 Trapping efficiency
 1.5.4 Charging efficiency
1.5.5 Air-to-fuel ratio
1.5.6 Cylinder trapping conditions
1.5.7 Heat released during the burning process
1.5.8 The thermodynamic cycle for the two-stroke engine
1.5.9 The concept of mean effective pressure
1.5.10 Power and torque and fuel consumption
1.6 Laboratory testing of two-stroke engines
 1.6.1 Laboratory testing for power, torque, mean effective pressure and specific fuel consumption
 1.6.2 Laboratory testing for exhaust emissions from two-stroke engines
 1.6.3 Trapping efficiency from exhaust gas analysis
1.7 Potential power output of two-stroke engines
 1.7.1 Influence of piston speed on the engine rate of rotation
 1.7.2 Influence of engine type on power output

Subscript notation for Chapter 1
References for Chapter 1

Chapter 2 Gas Flow through Two-Stroke Engines
2.0 Introduction
2.1 Motion of pressure waves in a pipe
 2.1.1 Nomenclature for pressure waves
 2.1.2 Propagation velocities of acoustic pressure waves
 2.1.3 Propagation and particle velocities of finite amplitude waves
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4</td>
<td>Propagation and particle velocities of finite amplitude waves in air</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Distortion of the wave profile</td>
</tr>
<tr>
<td>2.1.6</td>
<td>The properties of gases</td>
</tr>
<tr>
<td>2.2</td>
<td>Motion of oppositely moving pressure waves in a pipe</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Superposition of oppositely moving waves</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Wave propagation during superposition</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Mass flow rate during wave superposition</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Supersonic particle velocity during wave superposition</td>
</tr>
<tr>
<td>2.3</td>
<td>Friction loss and friction heating during pressure wave propagation</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Friction factor during pressure wave propagation</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Friction loss during pressure wave propagation in bends in pipes</td>
</tr>
<tr>
<td>2.4</td>
<td>Heat transfer during pressure wave propagation</td>
</tr>
<tr>
<td>2.5</td>
<td>Wave reflections at discontinuities in gas properties</td>
</tr>
<tr>
<td>2.6</td>
<td>Reflection of pressure waves</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Notation for reflection and transmission of pressure waves in pipes</td>
</tr>
<tr>
<td>2.7</td>
<td>Reflection of a pressure wave at a closed end in a pipe</td>
</tr>
<tr>
<td>2.8</td>
<td>Reflection of a pressure wave at an open end in a pipe</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Reflection of a compression wave at an open end in a pipe</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Reflection of an expansion wave at a bellmouth open end in a pipe</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Reflection of an expansion wave at a plain open end in a pipe</td>
</tr>
<tr>
<td>2.9</td>
<td>An introduction to reflection of pressure waves at a sudden area change</td>
</tr>
<tr>
<td>2.10</td>
<td>Reflection of pressure waves at an expansion in pipe area</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Flow at pipe expansions where sonic particle velocity is encountered</td>
</tr>
<tr>
<td>2.11</td>
<td>Reflection of pressure waves at a contraction in pipe area</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Flow at pipe contractions where sonic particle velocity is encountered</td>
</tr>
<tr>
<td>2.12</td>
<td>Reflection of waves at a restriction between differing pipe areas</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Flow at pipe restrictions where sonic particle velocity is encountered</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Examples of flow at pipe expansions, contractions and restrictions</td>
</tr>
<tr>
<td>2.13</td>
<td>An introduction to reflections of pressure waves at branches in a pipe</td>
</tr>
<tr>
<td>2.14</td>
<td>The complete solution of reflections of pressure waves at pipe branches</td>
</tr>
<tr>
<td>2.14.1</td>
<td>The accuracy of simple and more complex branched pipe theories</td>
</tr>
<tr>
<td>2.15</td>
<td>Reflection of pressure waves in tapered pipes</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Separation of the flow from the walls of a diffuser</td>
</tr>
<tr>
<td>2.16</td>
<td>Reflection of pressure waves in pipes for outflow from a cylinder</td>
</tr>
<tr>
<td>2.16.1</td>
<td>Outflow from a cylinder where sonic particle velocity is encountered</td>
</tr>
<tr>
<td>2.16.2</td>
<td>Numerical examples of outflow from a cylinder</td>
</tr>
<tr>
<td>2.17</td>
<td>Reflection of pressure waves in pipes for inflow to a cylinder</td>
</tr>
<tr>
<td>2.17.1</td>
<td>Inflow to a cylinder where sonic particle velocity is encountered</td>
</tr>
<tr>
<td>2.17.2</td>
<td>Numerical examples of inflow into a cylinder</td>
</tr>
<tr>
<td>2.18</td>
<td>The simulation of engines by the computation of unsteady gas flow</td>
</tr>
<tr>
<td>2.18.1</td>
<td>The basis of the GPB computation model</td>
</tr>
<tr>
<td>2.18.2</td>
<td>Selecting the time increment for each step of the calculation</td>
</tr>
<tr>
<td>2.18.3</td>
<td>The wave transmission during the time increment, dt</td>
</tr>
<tr>
<td>2.18.4</td>
<td>The interpolation procedure for wave transmission through a mesh</td>
</tr>
<tr>
<td>2.18.5</td>
<td>Singularities during the interpolation procedure</td>
</tr>
</tbody>
</table>
2.18.6 Changes due to friction and heat transfer during a computation step
2.18.7 Wave reflections at the inter-mesh boundaries after a time step
2.18.8 Wave reflections at the ends of a pipe after a time step
2.18.9 Mass and energy transport along the duct during a time step
2.18.10 The thermodynamics of cylinders and plenums during a time step
2.18.11 Air flow, work, and heat transfer during the modeling process
2.18.12 The modeling of engines using the GPB finite system method
2.19 The correlation of the GPB finite system simulation with experiments
2.19.1 The QUB SP (single pulse) unsteady gas flow experimental apparatus
2.19.2 A straight parallel pipe attached to the QUB SP apparatus
2.19.3 A sudden expansion attached to the QUB SP apparatus
2.19.4 A sudden contraction attached to the QUB SP apparatus
2.19.5 A divergent tapered pipe attached to the QUB SP apparatus
2.19.6 A convergent tapered pipe attached to the QUB SP apparatus
2.19.7 A longer divergent tapered pipe attached to the QUB SP apparatus
2.19.8 A pipe with a gas discontinuity attached to the QUB SP apparatus

Chapter 3 Scavenging the Two-Stroke Engine
3.0 Introduction
3.1 Fundamental theory
3.1.1 Perfect displacement scavenging
3.1.2 Perfect mixing scavenging
3.1.3 Combinations of perfect mixing and perfect displacement scavenging
3.1.4 Inclusion of short-circuiting of scavenging air flow in theoretical models
3.1.5 The application of simple theoretical scavenging models
3.2 Experimentation in scavenging flow
3.2.1 The Jante experimental method of scavenging flow assessment
3.2.2 Principles for successful experimental simulation of scavenging flow
3.2.3 Absolute test methods for the determination of scavenging efficiency
3.2.4 Comparison of loop, cross and uniflow scavenging
3.3 Comparison of experiment and theory of scavenging flow
3.3.1 Analysis of experiments on the QUB single-cylinder gas scavenging rig
3.3.2 A simple theoretical scavenging model which correlates with experiments
3.3.3 Connecting a volumetric scavenging model with engine simulation
3.3.4 Determining the exit properties by mass
3.4 Computational fluid dynamics
3.5 Scavenge port design
3.5.1 Uniflow scavenging
3.5.2 Conventional cross scavenging
3.5.3 Unconventional cross scavenging
3.5.3.1 The use of Prog.3.3(a) GPB CROSS PORTS
3.5.4 QUB type cross scavenging
3.5.4.1 The use of Prog.3.3(b) QUB CROSS PORTS

2.20 Computation time
2.21 Concluding remarks
References for Chapter 2
Appendix A2.1 The derivation of the particle velocity for unsteady gas flow
Appendix A2.2 Moving shock waves in unsteady gas flow
Appendix A2.3 Coefficients of discharge in unsteady gas flow
3.5.5 Loop scavenging
3.5.5.1 The main transfer port
3.5.5.2 Rear ports and radial side ports
3.5.5.3 Side ports
3.5.5.4 Inner wall of the transfer ports
3.5.5.5 Effect of bore-to-stroke ratio on loop scavenging
3.5.5.6 Effect of cylinder size on loop scavenging
3.5.5.7 The use of Prog.3.4, LOOP SCAVENGE DESIGN

3.5.6 Loop scavenging design for external scavenging
3.5.6.1 The use of Prog.3.5 BLOWN PORTS

3.6 Scavenging design and development

References for Chapter 3

Chapter 4 Combustion in Two-Stroke Engines

4.0 Introduction
4.1 The spark-ignition engine
4.1.1 Initiation of ignition
4.1.2 Air-fuel mixture limits for flammability
4.1.3 Effect of scavenging efficiency on flammability
4.1.4 Detonation or abnormal combustion
4.1.5 Homogeneous and stratified combustion
4.1.6 Compression ignition
4.2 Heat released by combustion
4.2.1 The combustion chamber
4.2.2 Heat release prediction from cylinder pressure diagram
4.2.3 Heat release from a two-stroke loop-scavenged engine
4.2.4 Combustion efficiency
4.3 Heat availability during the closed cycle
4.3.1 Properties of fuels
4.3.2 Properties of exhaust gas and combustion products
4.3.2.1 Stoichiometry and equivalence ratio
4.3.2.2 Rich mixture combustion

4.3.3 Heat availability during the closed cycle
4.3.4 Heat transfer during the closed cycle
4.3.5 Internal heat loss by fuel vaporization
4.3.6 Heat release data for spark-ignition engines
4.3.7 Heat release data for compression-ignition engines
4.3.7.1 The direct injection diesel (DI) engine
4.3.7.2 The indirect injection diesel (IDI) engine

4.4 Modeling the closed cycle theoretically
4.4.1 A simple closed cycle model within engine simulations
4.4.2 A closed cycle model within engine simulations
4.4.3 A one-dimensional model of flame propagation in spark-ignition engines
4.4.4 Three-dimensional combustion model for spark-ignition engines
4.5 Squish behavior in two-stroke engines
4.5.1 A simple theoretical analysis of squish velocity
4.5.2 Evaluation of squish velocity by computer
4.5.3 Design of combustion chambers to include squish effects
4.6 Design of combustion chambers for particular applications
4.6.1 The required clearance volume
4.7 Some general views on combustion chambers for particular applications

References for Chapter 4
Appendix A4.1 Exhaust emissions
Appendix A4.2 A simple two-zone combustion model
Chapter 5 **Computer Modeling of Engines**

5.0 Introduction
5.1 Structure of a computer model
5.2 Physical geometry required for an engine model
 5.2.1 The porting of the cylinder controlled by the piston motion
 5.2.2 The porting of the cylinder controlled externally
 5.2.3 The intake ducting
 5.2.4 The exhaust ducting
5.3 Heat transfer within the crankcase
5.4 Mechanical friction losses of two-stroke engines
5.5 The thermodynamic and gas-dynamic engine simulation
 5.5.1 The simulation of a chainsaw
 5.5.2 The simulation of a racing motorcycle engine
 5.5.3 The simulation of a multi-cylinder engine
5.6 Concluding remarks
References for Chapter 5
Appendix A5.1 The flow areas through poppet valves

Chapter 6 **Empirical Assistance for the Designer**

6.0 Introduction
6.1 Design of engine porting to meet a given performance characteristic
 6.1.1 Specific time areas of ports in two-stroke engines
 6.1.2 The determination of specific time area of engine porting
 6.1.3 The effect of changes of specific time area in a chainsaw
6.2 Some practical considerations in the design process
 6.2.1 The acquisition of the basic engine dimensions
 6.2.2 The width criteria for the porting
 6.2.3 The port timing criteria for the engine
 6.2.4 Empiricism in general
 6.2.5 The selection of the exhaust system dimensions
 6.2.6 Concluding remarks on data selection
6.3 Empirical design of reed valves for two-stroke engines

Chapter 7 **Reduction of Fuel Consumption and Exhaust Emissions**

7.0 Introduction
7.1 Some fundamentals of combustion and emissions
 7.1.1 Homogeneous and stratified combustion and charging
7.2 The simple two-stroke engine
 7.2.1 Typical performance characteristics of simple engines
 7.2.1.1 Measured performance data from QUB 400 research engine
 7.2.1.2 Typical performance maps for simple two-stroke engines
7.3 Optimizing fuel economy and emissions for the simple two-stroke engine
 7.3.1 The effect of scavenging on performance and emissions
 7.3.2 The effect of air-fuel ratio
 7.3.3 The effect of optimization at a reduced delivery ratio
 7.3.4 The optimization of combustion
 7.3.5 Conclusions regarding the simple two-stroke engine
7.4 The more complex two-stroke engine
 7.4.1 Stratified charging with homogeneous combustion
 7.4.2 Homogeneous charging with
Chapter 8 Reduction of Noise Emission from Two-Stroke Engines

8.0 Introduction

8.1 Noise

8.1.1 Transmission of sound

8.1.2 Intensity and loudness of sound

8.1.3 Loudness when there are several sources of sound

8.1.4 Measurement of noise and the noise-frequency spectrum

8.2 Noise sources in a simple two-stroke engine

8.3 Silencing the exhaust and inlet system

8.4 Some fundamentals of silencer design

8.4.1 The theoretical work of Coates

8.4.2 The experimental work of Coates

8.4.3 Future work for the prediction of silencer behavior

8.5 Acoustic theory for silencer attenuation characteristics

8.5.1 The diffusing type of exhaust silencer

8.5.2 The side-resonant type of exhaust silencer

8.5.3 The absorption type of exhaust silencer

8.5.4 The laminar flow exhaust silencer

8.5.5 Silencing the intake system

8.5.6 Engine simulation to include the noise characteristics

8.5.7 Shaping the ports to reduce high-frequency noise

8.6 Silencing the tuned exhaust system

8.6.1 A design for a silenced expansion chamber exhaust system

8.7 Concluding remarks on noise reduction

References for Chapter 8

Postscript

Appendix Listing of Computer Programs

Index