List of Chapters

1. Maurice Olley–His Life and Times
 1.1. Reminiscences
 1.2. Chronology–Maurice Olley
 1.3. Holyhead Road
 1.4. Olley’s Associates
 1.5. Introduction to the Monographs
 1.6. Suspension (General Discussion)

2. Tires and Steady-State Cornering–Slip Angle Effects (Primary)
 2.1. Introduction
 Part A: Simplified Tire Models
 2.2. Tires
 Effect of Slip Angle on Lateral Force
 Mathematical Representation of Lateral Force vs. Slip Angle
 Further Study of Parabola
 Notes on the Olley Tire Model
 Note on Wheel and Tire
 Part B: Bicycle Model Examples
 2.3. Steady-State Turns (General Discussion)
 Introduction
 Steady-State Turns
 Camber Steer–In a Parallel Independent Front Suspension (IFS)
 Roll Steer
 Changes in Steer Angle at the Front Wheels
 2.4. Calculating Steady-State Steering Characteristics (Bicycle Model)
 Introduction
 Measuring Steering Characteristics
 Examples
 Conventional Constant Radius/Variable Speed Skid Pad Test
 The “Infinite Skid Pad” (Testing at Constant Speed)
 Fixed Steering Angle

Part C: Four-Wheel Model Examples

2.5. Lateral Weight Transfer Effect (Wheel Pair)
 Introduction
 Distribution of the Roll Moment
 (about the Ground)
 Roll Moment Effects
 Roll Moment Effects–Analysis Based on the Layout of Figure 2.30 and Notation of Figure 2.29

2.6. Calculating Steady-State Steering Characteristics with Lateral Load Transfer Distribution (LLTD)
 Introduction
 Tires
 Summary of Steady-State Equations
 Some Variations
 Tire Lateral Forces

2.7. Traction Effects
 Introduction
 Rolling Resistance
 Combined Longitudinal and Lateral Tire Force
 Power Required

2.8. Neutral Steer Point and Static Margin
 Introduction
 Neutral Steer Point

2.9. Swing Axle
 Introduction
 Approximate Figuring of Swing Axle
 Roll Moments
 Swing Axle
 “De-Stabilizing” the Swing Axle

2.10. Summary of Steady-State Steering (Primary Effects)

2.11. Summary of Calculations in Sections
 2.4 through 2.9
 Section 2.4
 Section 2.5
 Section 2.6
 Section 2.7
 Section 2.8
 Section 2.9
3. Steady-State Cornering–Steer Effects (Secondary)

3.1. Introduction
 Note on Understeer/Oversteer as Measured in Skid Pad Tests

3.2. Roll Effects
 Inclined Roll Axis

3.3. Wheel Control (Rear Axle)
 Rear Axle
 Hotchkiss Rear Axle
 Torque Tube Rear Axle (and Panhard Rod)
 Four-Link Rear Axle
 Three-Link and Panhard Rod
 Offset Torque Arm
 Swing Axle Geometry

3.4. Wheel Control (Front Suspensions and Steering)
 Roll Steer of Front Wheels
 Front Axle
 Forward Steering
 Geometry in Roll
 Leaf Spring Geometry
 Front Axle Center Point
 Independent Front Suspension
 Wishbone Suspension
 Rear Steering Linkage
 Forward Steering Linkage

3.5. Understeer and Oversteer Effects, Front and Rear

3.6. Torque Steer

3.7. Lateral Deflection Steer
 Flexibility of Steering Linkage
 Timing of Lateral Deflection Steer
 Rear-Steer Effects

3.8. Straight Running

3.9. Suspension Geometry Effects
 Toe-In and Camber
 Camber-Change Variations (Wishbone Suspension)
 Caster
 Kingpin Angle
 Wheelfight

3.10. Effect of Road Surface

3.11. Wind Handling
 Introduction
 Yaw Damping Due to the Tires
 Path of Car
 Factors Affecting Wind Handling

3.12. Summary

4. Transient Cornering

4.1. Introduction

4.2. Checkerboard Test (Stonex)

4.3. Qualitative Transient Description (Schilling)
 Turn without Roll–No Understeer or Oversteer
 Turn with Roll

4.4. Linear Analysis

4.5. CAL Results (Segel)

4.6. Turn Entry Transient (Olley)

4.7. Moment of Inertia and Wheelbase
 Introduction
 Estimated k^½ab in Plan View

4.8. Steering when Moving Forward
 Time Response
 Response Plots for a Modern Car
 Steering when Moving Forward, Steady State

4.9. Steering when Moving in Reverse
 Comments on Steering in Forward and Reverse
 Time Response in Reverse

4.10. Boat Steering and Truck in Reverse
 Boat Steering
 Truck in Reverse

4.11. Note on Ackermann ℓ/R Approximation

4.12. Summary

5. Ride

5.1. Introduction

5.2. Dry Friction

5.3. Fluid Damping

5.4. Steel Springs: Work Storage Analysis

5.5. Work Stored in Springs
 Round Wire Helical Spring in Compression, or Torsion Rod

5.6. Toggles and Self-Leveling

5.7. Two Degrees of Freedom

5.8. The Rowell and Guest Treatment
 Spring Center O
 CG of Sprung Mass
 Pitch Stability
 Oscillation Centers

5.9. Actual Ride Frequencies

5.10. Height of Oscillation Centers and Sprung CG

5.11. Additional Material on the Two-Degree-of-Freedom Ride Model

5.12. Unsprung Weight

5.13. Independent Suspension
5.14. Multiple Suspension
5.15. Summary

6. Oscillations of the Unsprung
6.1. Introduction
6.2. Shimmy Dynamics and Its Cures
 Center-Point Steering
 Kingpin in the Wheel Plane
 Drag-Link Springs
 Shimmy Shackle
 Compensated Tie Rods
 Independent Suspension Mechanisms
6.3. Wheelfight
 Introduction
 Steering Gear Resonance
 Wheelfight Cures
 Effect on Wheelfight (Schilling, “Handling Factors,” 1938)
6.4. Caster Wobble (Olley)
 Case Study—Chevrolet with Dubonnet IFS
 Road Speed
 Road Surface
 Engine Mount
 Summary—Caster Wobble
6.5. Wheel Hop
 Introduction
 Damping of the Sprung and Unsprung Masses
 Harmonic Wheel Hop Absorbers
 Frequency of Wheel Hop
 Shock Absorbers
6.6. Fore and Aft Forces
6.7. Washboard Roads
6.8. Brake Hop
6.9. Reverse Power Hop
 Note on Reverse Power Hop
 (Offset Torque Arm)
6.10. Axle Tramp
 “Sculling Action”
6.11. Crane-Simplex Linkage
6.12. Damping of a Swing Axle
6.13. Note on Raised Roll Center without Swing Axle
 Waddle and Side Chuck
 Wheelhouse Clearance
 Tire Scrub
 Scrub Damping
6.15. Summary

7. Suspension Linkages
7.1. Introduction
7.2. Front Suspension with No Offsets
 (First Approximation)
 Camber Change
7.3. Steering Linkage (without Anti-Dive)
7.4. Effect of Anti-Dive on Steering Linkage Layout
7.5. Wheel Motions with Arm-Planes at an Angle to the Transverse Plane
7.6. Greater Accuracy (Allowance for Offsets)
 Camber (Inclination) Change (γ)
 Tread Change (One Wheel)
7.7. Comparison Example—Front Suspension without and with Offsets
7.8. Link Suspension Rear Axle
7.9. Rear Axle Linkage with Offsets
7.10. Ride Rates and Wheel Rates
7.11. Camber Thrust
7.12. Toe-In—Swing Axle with Diagonal Pivot
7.13. Wheel Rates—Wishbone Suspension
7.15. Effect of Camber Change on Wheel Rate
7.16. Vertical Rate of Arm and Torsion Spring
7.17. Position of Springs
7.18. Summary

8. Roll, Roll Moments and Skew Rates
8.1. Introduction
8.2. The Roll Axis
 Axle
 Independent without Tread [Track] Change
 Independent with Tread Change
 Swing Axle
8.3. Intermediate Designs of Independent Suspension
8.4. De Dion Axles
8.5. Skew Rates [Warp]
8.6. Longitudinal Interconnection—Compensated Suspension
 Total Roll Rate for Compensated Suspension
 Skew Rate
8.7. Roll Stability
 Scale Effects
Roll Stabilizer
8.8. Roll Axis Measurement
8.9. Summary

9. Fore and Aft Forces
9.1. Introduction
9.2. Maximum Traction
 Front Drive
 Grades
9.3. Brake Distribution
9.4. Brake Dive
9.5. Anti-Dive Geometry
9.6. Power Squat
9.7. Mercedes Single-Joint Swing Arm
9.8. Vehicles with Axles Controlled by
 Leaf Springs
 Wind-Up of Unsymmetrical Spring
 Note on Wind-Up Stiffness of Leaf Springs
9.9. Inclination of Leaf Springs
9.10. Anti-Dive Front Wishbone Suspension
9.11. Sudden Brake Application
9.12. Summary

10. Leaf Springs–Combined Suspension Spring and Linkage
10.1. Introduction
10.2. Circular Bending
10.3. Parallel Cantilever
10.4. Theoretical Single Leaf
10.5. Figuring a Leaf Spring
10.6. Cantilever Spring
10.7. Equal Leaves and Equal Spacing
10.8. Combined Spring Rate (with “Unbalanced” Springs)
10.9. Effective Torque Arm
10.10. Roll Rates
10.11. Shackle Effects–Symmetrical and Unsymmetrical Springs
 With Symmetrical Leaf Springs
 Shackle Effects, Unsymmetrical Springs
10.12. Spring Testing
10.13. Summary

Appendix A Slip Angle Sign Conventions
A.1 Introduction
A.2 SAE Sign Convention
A.3 Olley’s Sign Convention
A.4 Summary

Appendix B Fiala/Radt Nondimensional Tire Representation
B.1 Introduction
B.2 Derivation
B.3 Advantages of Tire Nondimensionalization

Appendix C Technical Papers by Olley—Summaries and Reviews

Appendix D Olley Correspondence

Appendix E Balloon Tires and Front Wheel Suspension

Appendix F Sense of Direction

Appendix G Development of the Flat Ride

Index
About the Authors