An Introduction to Modern Vehicle Design

List of Chapters

Preface
Acknowledgements

1. Automotive engineering development
 R.H. Barnard
 1.1 Introduction
 1.2 Innovations and inventions
 1.3 Mass production
 1.4 The development of the world motor industry
 1.5 Streamlining
 1.6 Commercial vehicles
 1.7 Engine developments
 1.8 Transmission system development
 1.9 Steering
 1.10 Suspension
 1.11 Brakes
 1.12 Interior refinement
 1.13 Safety design
 1.14 Too much innovation
 1.15 References and further reading

2. Modern materials and their incorporation into vehicle design
 Rob Hutchinson
 2.1 Introduction
 2.2 Structure and manufacturing technology of automotive materials
 2.3 Mechanical and physical properties of automotive materials
 2.4 Materials selection for automotive components
 2.5 Component materials case studies
 2.6 References and further reading

3. The manufacturing challenge for automotive designers
 P.G. Leaney and R. Marshall
 3.1 Introduction
 3.2 Lean product development and lean production
 3.3 Design to manufacture as a single process and IPPD
 3.4 Manufacturing analysis, tools and methods
 3.5 Materials processing and technology
 3.6 Conclusions
 3.7 Acronyms
 3.8 References and further reading

4. Body design: The styling process
 Neil Birtley
 4.1 Introduction
 4.2 The studios, working environment and structure
 4.3 Product planning
 4.4 Brainstorming
 4.5 The package
 4.6 Review of competition
 4.7 Concept sketching and package related sketching
 4.8 Full sized tape drawing
 4.9 Clay modelling
 4.10 2D systems
 4.11 3D systems
 4.12 References and further reading

5. Body design: Aerodynamics
 Robert Dominy
 5.1 Introduction
 5.2 Aerodynamic forces
 5.3 Drag
 5.4 Drag reduction
 5.5 Stability and cross-winds
 5.6 Noise
 5.7 Underhood ventilation
 5.8 Cabin ventilation
 5.9 Wind tunnel testing
 5.10 Computational fluid dynamics
 5.11 References and further reading

6. Chassis design and analysis
 John Robertson
 6.1 Load case, introduction
 6.2 Chassis types, introduction
 6.3 Structural analysis by simple structural surfaces method
 6.4 Computational methods
 6.5 Summary
 6.6 References and further reading

7. Crashworthiness and its influence on vehicle design
 Bryan Chinn
 7.1 Introduction
 7.2 Accident and injury analysis
 7.3 Vehicle impacts: general dynamics
 7.4 Vehicle impacts: crush characteristics
 7.5 Structural collapse and its influence upon safety
 7.6 References and further reading

8. Noise vibration and harshness
 Brian Hall
 8.1 Introduction
 8.2 Review of vibration fundamentals
 8.3 Vibration control
8.4 Fundamentals of acoustics
8.5 Human response to sound
8.6 Sound measurement
8.7 Automotive noise criteria
8.8 Automotive noise sources and control techniques
8.9 General noise control principles
8.10 References and further reading

9. Occupant accommodation: an ergonomics approach
 J. Mark Porter and C. Samantha Porter
9.1 Introduction
9.2 Eight fundamental fallacies
9.3 Ergonomics in the automotive industry
9.4 Ergonomics methods and tools to promote occupant accommodation
9.5 Case studies
9.6 Further trends
9.7 Strategies for improving occupant accommodation and comfort
9.8 Future reading
9.9 Author details
9.10 References

10. Suspension systems and components
 Brian Hall
10.1 Introduction
10.2 The role of a vehicle suspension
10.3 Factors affecting design
10.4 Definitions and terminology
10.5 The mobility of suspension mechanisms
10.6 Suspension types
10.7 Kinematic analysis
10.8 Roll centre analysis
10.9 Force analysis
10.10 Anti-squat/anti-dive geometries
10.11 Lateral load transfer during cornering
10.12 Suspension components
10.13 Vehicle ride analysis
10.14 Controllable suspensions
10.15 References
10.16 Further reading

11. Control systems in automobiles
 H. Morris
11.1 Introduction
11.2 Automotive application of sensors
11.3 Engine management systems
11.4 Electronic transmission control
11.5 Integration of engine management and transmission control systems
11.6 Chassis control systems
11.7 Multiplex wiring systems
11.8 Vehicle safety and security systems
11.9 On-board navigation systems

12. The design of engine characteristics for vehicle use
 Brian Agnew
12.1 Introduction
12.2 The constant volume or Otto cycle
12.3 Deviations from the ideal cycles
12.4 The compression process
12.5 Progressive combustion
12.6 The chemistry of the combustion process
12.7 Expansion and exhaust
12.8 Recommended reading

13. Transmissions and driveline
 Nick Vaughan and Dave Simmer
13.1 Introduction
13.2 What the vehicle requires from the transmission
13.3 The manual gearbox
13.4 The automatic transmission
13.5 Continuously variable transmissions
13.6 Application issues for transmissions

14. Braking systems
 P.C. Brooks and D. C. Barton
14.1 Introduction
14.2 Legislation
14.3 The fundamentals of braking
14.4 Brake proportioning and adhesion utilization
14.5 Materials design
14.6 Advanced topics
14.7 References and further reading

15. Failure prevention - The role of endurance and durability studies in the design and manufacture of reliable vehicles
 F.L. Jones, R. Scott and D.E. Taylor
15.1 Introduction
15.2 Important aspects of failures in the real engineering world
15.3 Testing and failure prediction
15.4 Automotive technology and the importance of avoiding failures
15.5 Case studies - typical examples of automotive failures
15.6 References and further reading

16. Future trends in automobile design
 J. Happian-Smith and Eric Chownietz
16.1 Introduction
16.2 Mechanical possibilities
16.3 Electrical and electronic possibilities

Index