Preface

1 Types of suspension and drive
 1.1 General characteristics of wheel suspensions
 1.2 Independent wheel suspensions - general
 1.2.1 Requirements
 1.2.2 Double wishbone suspensions
 1.2.3 McPherson struts and strut dampers
 1.2.4 Rear axle trailing-arm suspension
 1.2.5 Semi-trailing-arm rear axles
 1.2.6 Multi-link suspension
 1.3 Rigid and semi-rigid crank axles
 1.3.1 Rigid axles
 1.3.2 Semi-rigid crank axles
 1.4 Front-mounted engine, rear-mounted drive
 1.4.1 Advantages and disadvantages of the front-mounted engine, rear-mounted drive design
 1.4.2 Non-driven front axles
 1.4.3 Driven rear axles
 1.5 Rear and mid engine drive
 1.6 Front-wheel drive
 1.6.1 Types of design
 1.6.2 Advantages and disadvantages of front-wheel drive
 1.6.3 Driven front axles
 1.6.4 Non-driven rear axles
 1.7 Four-wheel drive
 1.7.1 Advantages and disadvantages
 1.7.2 Four-wheel drive vehicles with overdrive
 1.7.3 Manual selection four-wheel drive on commercial and all-terrain vehicles
 1.7.4 Permanent four-wheel drive; basic passenger car with front-wheel drive
 1.7.5 Permanent four-wheel drive, basic standard design passenger car
 1.7.6 Summary of different kinds of four-wheel drive
 2 Tyres and wheels
 2.1 Tyre requirements
 2.1.1 Interchangeability
 2.1.2 Passenger car requirements
 2.1.3 Commercial vehicle requirements
 2.2 Tyre designs
 2.2.1 Diagonal ply tyres
 2.2.2 Radial ply tyres
 2.2.3 Tubeless or tubed
 2.2.4 Height-to-width ratio
 2.2.5 Tyre dimensions and markings
 2.2.6 Tyre load capacities and inflation pressures
 2.2.7 Tyre sidewall markings
 2.2.8 Rolling circumference and driving speed
 2.2.9 Influence of the tyre on the speedometer
 2.3 Wheels
 2.3.1 Concepts
 2.3.2 Rims for passenger cars, light commercial vehicles and trailers
 2.3.3 Wheels for passenger cars, light commercial vehicles and trailers
 2.3.4 Wheel mountings
 2.4 Springing behaviour
 2.5 Non-uniformity
 2.6 Rolling resistance
 2.6.1 Rolling resistance in straight-line driving
 2.6.2 Rolling resistance during cornering
 2.6.3 Other influencing variables
 2.7 Rolling force coefficients and sliding friction
 2.7.1 Slip
 2.7.2 Friction coefficients and factors
 2.7.3 Road influences
 2.8 Lateral force and friction coefficients
 2.8.1 Lateral forces, slip angle and coefficient of friction
 2.8.2 Self-steering properties of vehicles
 2.8.3 Coefficients of friction and slip
 2.8.4 Lateral cornering force properties on dry road
 2.8.5 Influencing variables
 2.9 Resulting force coefficient
 2.10 Tyre self-aligning torque and caster offset
 2.10.1 Tyre self-aligning torque in general
 2.10.2 Caster offset
 2.10.3 Influences on the front wheels
 2.11 Tyre overturning moment and displacement of point of application of force
 2.12 Torque steer effects
 2.12.1 Torque steer effects as a result of
The Automotive Chassis
Engineering Principles

changes in normal force
2.12.2 Torque steer effects resulting from tyre aligning torque
2.12.3 Effect of kinematics and elastokinematics

3 Wheel travel and elastokinematics
3.1 Purpose of the axle settings
3.2 Wheelbase
3.3 Track
3.4 Roll centre and roll axis
3.4.1 Definitions
3.4.2 Body roll axis
3.4.3 Body roll centre on independent wheel suspensions
3.4.4 Body roll centre on twist-beam suspensions
3.4.5 Body roll centre on rigid axles
3.5 Camber
3.5.1 Camber values and data
3.5.2 Kinematic camber alteration
3.5.3 Camber alteration calculation by drawing
3.5.4 Roll camber during cornering
3.5.5 Elasticity camber
3.6 Toe-in and self-steering
3.6.1 Toe-in and crab angle, data and tolerances
3.6.2 Toe-in and steering angle alteration owing to wheel bump-travel kinematics
3.6.3 Toe-in and steering angle alteration due to roll
3.6.4 Toe-in and steering angle alteration due to lateral forces
3.6.5 Toe-in and steering angle alteration due to longitudinal forces
3.7 Steer angle and steering ratio
3.7.1 Steer angle
3.7.2 Track and turning circles
3.7.3 Kinematic steering ratio
3.7.4 Dynamic steering ratio
3.8 Steering self-centring - general
3.9 Kingpin inclination and kingpin offset at ground
3.9.1 Relationship between kingpin inclination and kingpin offset at ground (scrub radius)
3.9.2 Braking moment-arm
3.9.3 Longitudinal force moment-arm
3.9.4 Alteration to the kingpin offset

3.10 Caster
3.10.1 Caster trail and angle
3.10.2 Caster and straight running
3.10.3 Righting moments during cornering
3.10.4 Kingpin inclination, camber and caster alteration as a consequence of steering
3.10.5 Kinematic caster alteration on front-wheel travel
3.10.6 Wheel travel-dependent rotation of the rear steering knuckle
3.10.7 Resolution of the vertical wheel force on caster
3.10.8 Settings and tolerances
3.11 Anti-dive and anti-squat mechanisms
3.11.1 Concept description
3.11.2 Vehicle pitch axis front
3.11.3 Pitch axes rear
3.12 Chassis alignment
3.12.1 Devices for measuring and checking chassis alignment
3.12.2 Measuring the caster, kingpin inclination, camber and toe-in alteration

4 Steering
4.1 Steering system
4.1.1 Requirements
4.1.2 Steering system on independent wheel suspensions
4.1.3 Steering system on rigid axles
4.2 Rack and pinion steering
4.2.1 Advantages and disadvantages
4.2.2 Configurations
4.2.3 Steering gear, manual with side tie rod take-off
4.2.4 Steering gear, manual with centre tie rod take-off
4.3 Recirculating ball steering
4.3.1 Advantages and disadvantages
4.3.2 Steering gear
4.4 Power steering systems
4.4.1 Hydraulic power steering systems
4.4.2 Electro-hydraulic power steering systems
4.4.3 Electrical power steering systems
4.5 Steering column
4.6 Steering damper
4.7 Steering kinematics
4.7.1 Influence of type and position of the steering gear
4.7.2 Steering linkage configuration
4.7.3 Tie rod length and position

5 Springing
5.1 Comfort requirements
5.1.1 Springing comfort
5.1.2 Running wheel comfort
5.1.3 Preventing ‘front-end shake’
5.2 Masses, vibration and spring rates
5.3 Weights and axle loads
5.3.1 Curb weight and vehicle mass
5.3.2 Permissible gross vehicle weight and mass
5.3.3 Permissible payload
5.3.4 Design weight
5.3.5 Permissible axle loads
5.3.6 Load distribution according to ISO 2416
5.4 Springing curves
5.4.1 Front axle
5.4.2 Rear axle
5.4.3 Springing and cornering behaviour
5.4.4 Diagonal springing
5.5 Spring types
5.5.1 Air- and gas-filled spring devices
5.5.2 Steel springs
5.5.3 Stops and supplementary springs
5.5.4 Anti-roll bars
5.6 Shock absorbers (suspension dampers)
5.6.1 Types of fitting
5.6.2 Twin-tube shock absorbers, non-pressurized
5.6.3 Twin-tube shock absorbers, pressurized
5.6.4 Monotube dampers, pressurized
5.6.5 Monotube dampers, non-pressurized
5.6.6 Damping diagrams and characteristics
5.6.7 Damper attachments
5.6.8 Stops and supplementary springs
5.7 Spring/damper units
5.8 McPherson struts and strut dampers
5.8.1 McPherson strut designs
5.8.2 Twin-tube McPherson struts, non-pressurized
5.8.3 Twin-tube McPherson struts, pressurized
5.8.4 Damper struts
5.9 Variable damping

6 Chassis and vehicle overall
6.1 Vehicle and body centre of gravity
6.1.1 Centre of gravity and handling properties
6.1.2 Calculating the vehicle centre of gravity
6.1.3 Axle weights and axle centres of gravity
6.1.4 Body weight and body centre of gravity
6.2 Mass moments of inertia
6.3 Braking behaviour
6.3.1 Braking
6.3.2 Braking stability
6.3.3 Calculating the pitch angle
6.3.4 Influence of radius-arm axes
6.3.5 Anti-dive control and brake reaction support angle
6.4 Traction behaviour
6.4.1 Drive-off from rest
6.4.2 Climbing ability
6.4.3 Skid points
6.5 Platform, unit assembly and common part systems

Bibliography
Glossary of symbols
Index of car manufacturers
Index of car suppliers
Subject index