Automotive Gasoline Direct-Injection Engines

List of Chapters

Foreword
Preface
Acknowledgements
Nomenclature

Chapter 1 Introduction
1.1 Overview
1.2 Gasoline Direct Injection versus Port Fuel Injection
1.3 Classification of Gasoline Direct-Injection Engines
1.4 Summary

Chapter 2 Combustion System Configurations
2.1 Introduction
2.2 Relative Position of Fuel Injector and Spark Plug
2.3 Approaches to Achieving a Stratified Charge
2.3.1 Spray-Guided Combustion Systems
2.3.2 Wall-Guided Combustion Systems
2.3.3 Air-Guided Combustion Systems
2.4 Summary

Chapter 3 Fuel Injection System
3.1 Introduction
3.2 Fuel System Requirements
3.3 Fuel Injector Requirements and Considerations
3.4 Fuel Pressure Requirements
3.5 Fuel Injector Classification
3.5.1 Inwardly Opening, Single-Fluid Swirl Injector
3.5.2 Shaped-Spray Injector
3.5.3 Slit-Type Nozzle
3.5.4 Multi-hole Nozzle
3.5.5 Outwardly Opening, Single-Fluid Swirl Injector
3.5.6 Piezoelectrically Actuated Injector

Chapter 4 Fuel Spray Characteristics
4.1 Introduction
4.2 Spray Atomization Requirements
4.3 Fuel Spray Classification
4.4 Sac Spray Considerations
4.5 After-Injection Dynamics and Atomization
4.6 Fuel Spray Penetration and Cone Angle Considerations
4.7 Characteristics of Offset Sprays
4.8 Split Injection Considerations
4.9 Spray Characteristics of Single-Fluid Swirl Injectors
4.9.1 Swirl Nozzle Flow Dynamics and Effects of Design Parameters
4.9.2 Effect of Fuel Swirl Ratio on Spray Characteristics
4.9.3 Spray Characteristics of Inwardly Opening, Single-Fluid Swirl Injector
4.9.4 Spray Characteristics of Outwardly Opening, Single-Fluid Swirl Injector
4.9.5 Spray Characteristics of Shaped-Spray Injector
4.10 Spray Characteristics of Single-Fluid, Non-Swirl Injectors
4.10.1 Spray Characteristics of Slit-Type Nozzle
4.10.2 Spray Characteristics of Multi-hole Nozzle
4.10.3 Spray Characteristics During Cold Crank and Start
4.11 Characteristics of Pulse-Pressurized, Air-Assisted Sprays
4.12 Ambient Density Effect on Spray Development
4.13 Injector Operating Temperature and Fuel Volatility Effects on Spray Development
4.13.1 Injector Operating Temperature Effect on Spray Development of Swirl-Type Injector
4.13.2 Combined Effects of Injector Operating Temperature and Ambient Back Pressure on Spray Development of Non-Swirl Injectors
4.14 Spray Atomization Ranges for Design and Operating Variables
4.15 Current Best-Practice Performance of G-DI Injectors
4.16 Issues with G-DI Spray Characterization
4.16.1 G-DI Fuel Spray Measurement Considerations
4.16.2 Spray Characterization Issues
4.16.3 G-DI Spray Measurement Techniques and Hardware
4.16.4 DV80 versus DV90 Measurement Accuracy
4.17 Summary

Chapter 5 Mixture Formation Process and Approaches

5.1 Introduction
5.2 Relation of In-Cylinder Flow Characteristics to G-DI Combustion
5.2.1 Typical In-Cylinder Flow Characteristics in SI Engines
5.2.2 G-DI Flow Field Characteristics and Considerations
5.2.3 Effect of Fuel Injection Event on In-Cylinder Flow Field
5.3 Fuel-Air Mixing Process
5.3.1 In-Cylinder Charge Cooling
5.3.2 In-Cylinder Fuel-Air Mixing Characteristics
5.4 Spray-Wall Interactions
5.4.1 Interactions of G-DI Sprays with Interposed Surfaces

Chapter 6 Combustion Process and Control Strategies

6.1 Introduction
6.2 Engine Operating Modes and Fuel Injection Strategies
6.2.1 Early-Injection, Homogeneous-Charge Operation
6.2.2 Late-Injection, Stratified-Charge Operation
6.2.3 Stoichiometric-Charge Operation
6.2.4 Slightly Lean, Stratified-Charge Operation for Improving Catalyst Light-Off Characteristics
6.2.5 Operating Mode Transition
6.2.6 Comparison of Operating Mode Complexity
6.2.7 G-DI Engine Operating Classes
6.3 Split Injection Strategy
6.3.1 Two-Stage Injection Strategy for Mode Transition
6.3.2 Split Injection for Improving Full-Load Performance
6.3.3 Post Injection for Improving Catalyst Light-Off Characteristics
6.3.4 Post Injection for NOx Storage Catalyst Regeneration
6.3.5 Split Injection for Control of Homogeneous-Charge, Compression-Ignition Engine Implementation of Split Injection in Engine Operating Map
6.4 Combustion Characteristics
6.4.1 Homogeneous-Charge Combustion Characteristics
6.4.2 Comparison of Stratified-Charge and Homogeneous-Charge Combustion Effects of Engine Operating and Design Parameters on G-DI Combustion
Chapter 10 Production and Prototype Gasoline Direct-Injection Systems

10.1 Early DISC Engine Development
10.2 Mitsubishi Reverse-Tumble-Based Wall-Guided GDI Combustion System
10.3 Toyota Combustion Systems
 10.3.1 Toyota First-Generation, Swirl-Based, Wall-Guided D-4 Combustion System
 10.3.2 Toyota Second-Generation, Wall-Guided D-4 Combustion System
10.4 Nissan Swirl-Based, Wall-Guided NEODi Combustion System
10.5 Renault Spray-Guided IDE Combustion System
10.6 Adam Opel Wall-Guided, ECOTEC DIRECT Combustion System
10.7 Audi Wall-Guided Combustion System
10.8 AVL Combustion Systems
 10.8.1 AVL Swirl-Based, Wall-Guided Combustion System
 10.8.2 AVL Mixture Injection DMI Combustion System
10.9 FEV Air-Guided Combustion System
10.10 Fiat Combustion System
10.11 Ford Combustion Systems
 10.11.1 Ford Spray-Guided Combustion System
 10.11.2 Ford Swirl-Based, Wall-Guided Combustion System
10.12 Honda Spray-Guided Combustion System
10.13 Isuzu Combustion System
10.14 Mazda Swirl-Based, Wall-Guided Combustion System
10.15 Mercedes-Benz Spray-Guided Combustion System
10.16 Orbital Combustion System Employing Pulse-Pressurized, Air-Assisted Fuel Injection System
10.17 PSA Reverse-Tumble-Based, Wall-Guided HPI Combustion System
10.18 Ricardo Tumble-Based, Wall-Guided Combustion System
10.19 Saab Spray-Guided SCC Combustion System
10.20 Subaru Spray-Guided Combustion System
10.21 Volkswagen Tumble-Based, Wall-Guided FSI Combustion System
10.22 Summary

References
Index
About the Authors