1 Introduction
1.1 Preface
1.2 Introduction to the simple structural surfaces (SSS) method
1.3 Expectations and limitations of the SSS method
1.4 Introduction to the conceptual design stage of vehicle body-in-white design
1.5 Context of conceptual design stage in vehicle body-in-white design
1.6 Roles of SSS with finite element analysis (FEA) in conceptual design
1.7 Relationship of design concept filtering to FEA models
1.8 Outline summary of this book
1.9 Major classes of vehicle loading conditions - running loads and crash loads

2 Fundamental vehicle loads and their estimation
2.1 Introduction: vehicle loads definition
2.2 Vehicle operating conditions and proving ground tests
2.3 Load cases and load factors
2.4 Basic global load cases
 2.4.1 Vertical symmetric ('bending') load case
 2.4.2 Vertical asymmetric case (and the pure torsion analysis case)
 2.4.3 Longitudinal loads
 2.4.4 Lateral loads
2.5 Combinations of load cases
 2.5.1 Road loads

3 Terminology and overview of vehicle structure types
3.1 Basic requirements of stiffness and strength
 3.1.1 Strength
 3.1.2 Stiffness
 3.1.3 Vibrational behaviour
 3.1.4 Selection of vehicle type and concept
3.2 History and overview of vehicle structure types
 3.2.1 History: the underfloor chassis frame
 3.2.2 Modern structure types

4 Introduction to the simple structural surfaces (SSS) method
4.1 Definition of a simple structural surface (SSS)
4.2 Structural subassemblies that can be represented by a simple structural surface (SSS)
4.3 Equilibrium conditions
4.4 A simple box structure
4.5 Examples of integral car bodies with typical SSS idealizations
4.6 Role of SSS method in load-path/stiffness analysis
Appendix Edge load distribution for a floor with a simple grillage

5 Standard sedan (saloon) - baseline load paths
5.1 Introduction
5.1.1 The standard sedan
5.2 Bending load case for the standard sedan (saloon)
 5.2.1 Significance of the bending load case
 5.2.2 Payload distribution
 5.2.3 Free body diagrams for the SSSs
 5.2.4 Free body diagrams and equilibrium equations for each SSS
 5.2.5 Shear force and bending moment diagrams in major components - design implications
5.3 Torsion load case for the standard sedan
 5.3.1 The pure torsion load case and its significance
 5.3.2 Overall equilibrium of vehicle in torsion
 5.3.3 End structures
 5.3.4 Passenger compartment
 5.3.5 Summary - baseline closed sedan
5.3.6 Some notes on the standard sedan in torsion
5.3.7 Structural problems in the torsion case
5.4 Lateral loading case
5.4.1 Roll moment and distribution at front and rear suspensions
5.4.2 Additional simple structural surfaces for lateral load case
5.5 Braking (longitudinal) loads
5.6 Summary and discussion

6 Alternative construction for body subassemblies and model variants
6.1 Introduction
6.2 Alternative construction for major body subunits
 (a) Rear structures
 6.2.1 Rear suspension supported on floor beams
 6.2.2 Suspension towers at rear
 (b) Frontal structures
 6.2.3 Grillage type frontal structure
 6.2.4 Grillage type frontal structure with torque tubes
 6.2.5 Missing or flexible shear web in inner fender
 6.2.6 Missing shear web in inner fender: upper rail direct to A-pillar
 6.2.7 Sloping inner fender (with shear panel)
 6.2.8 General case of fender with arbitrary-shaped panel
6.3 Closed model variants
 6.3.1 Estate car/station wagon
 6.3.2 Hatchback
 6.3.3 Pick-up trucks
6.4 Open (convertible/cabriolet) variants
 6.4.1 Illustration of load paths in open vehicle: introduction
 6.4.2 Open vehicle: bending load case
 6.4.3 Open vehicle: torsion load case
 6.4.4 Torsion stiffening measures for open car structures
 6.4.5 Simple structural surfaces analysis of an open car structure torsionally stiffened by ‘boxing in’ the engine compartment

7 Structural surfaces and floor grillages
7.1 Introduction
7.2 In-plane loads and simple structural surfaces

7.2.1 Shear panels, and structures incorporating them
7.2.2 Triangulated truss
7.2.3 Single or multiple open bay ring frames
7.2.4 Comparison of stiffness/weight of different simple structural surfaces
7.2.5 Simple structural surfaces with additional external loads
7.3 In-plane forces in sideframes
 7.3.1 Approximate estimates of pillar loads in sideframes
7.4 Loads normal to surfaces: floor structures
 7.4.1 Grillages
 7.4.2 The floor as a load gatherer
 7.4.3 Load distribution in floor members
 7.4.4 Swages and corrugations

8 Application of the SSS method to an existing vehicle structure
8.1 Introduction
8.2 Determine SSS outline idealization from basic vehicle dimensions
 8.2.1 Locate suspension interfaces to body structure where weight bearing reactions occur
 8.2.2 Generation of SSSs which simulate the basic structural layout
8.3 Initial idealization of an existing vehicle
8.4 Applied loads (bending case)
 8.4.1 Front suspension tower
 8.4.2 Engine rail
 8.4.3 Centre floor
 8.4.4 Dash panel
 8.4.5 Rear seat cross-beam
 8.4.6 Rear floor beams
 8.4.7 Rear panel
 8.4.8 Sideframe
 8.4.9 Bending case design implications
8.5 Applied loads (torsion case)
 8.5.1 Rear floor beams
 8.5.2 Front suspension towers and engine rails
 8.5.3 The main torsion box
 8.5.4 Torsion case design implications
8.6 An alternative model
 8.6.1 Front suspension towers and inner wing panels
 8.6.2 Rear floor beams
 8.6.3 The main torsion box
8.6.4 Torsion case (alternative model) design implications
8.7 Combined bending and torsion
8.8 Competing load paths

9 Introduction to vehicle structure preliminary design SSS method
9.1 Design synthesis vs analysis
9.2 Brief outline of the preliminary or conceptual design stage
9.3 Basic principles of the SSS design synthesis approach
 9.3.1 Starting point (package and part requirements)
 9.3.2 Suggested steps
 9.3.3 Suggested priorities for examination of local subunits and components
 9.3.4 Positioning of major members
 9.3.5 Member sizing
9.4 Relation of SSS to FEA in preliminary design
 9.4.1 Scope of SSS method
 9.4.2 Limitations and assumptions of SSS method
 9.4.3 Suggested role of SSS method
 9.4.4 Role of FEA
 9.4.5 Integration of SSS, FEA and other analyses
9.5 The context of the preliminary design stage in relation to the overall body design process
 9.5.1 Timing
 9.5.2 Typical analytical models (FEM etc.) used at different stages in the design cycle

10 Preliminary design and analysis of body subassemblies using the SSS method
10.1 Introductory discussion
 10.1.1 Alternative 1: employ a bulkhead
 10.1.2 Alternative 2: move where the load is applied to a more favourable location
 10.1.3 Alternative 3: transfer the load to an SSS perpendicular to the rear compartment pan
10.2 Design example 1: steering column mounting/dash assembly
 10.2.1 Design requirements and conflicts
 10.2.2 Attached components
10.3 Design example 2: engine mounting brackets
 10.3.1 Vertical direction
 10.3.2 Lateral direction
 10.3.3 Fore–aft direction
 10.3.4 Summary
10.4 Design example 3: front suspension mounting
 10.4.1 Forces applied to and through the suspension
 10.4.2 Forces on the body or subframe

11 Fundamentals and preliminary sizing of sections and joints
11.1 Member/joint loads from SSS analysis
11.2 Characteristics of thin walled sections
 11.2.1 Open sections
 11.2.2 Closed sections
 11.2.3 Passenger car sections
11.3 Examples of initial section sizing
 11.3.1 Front floor cross-beam
 11.3.2 The “A”-pillar
 11.3.3 Engine longitudinal rail
11.4 Sheet metal joints
 11.4.1 Spot welds
11.5 Spot weld and connector patterns
 11.5.1 Spot welds along a closed section
11.6 Shear panels
 11.6.1 Roof panels
 11.6.2 Inner wing panels (inner fender)

12 Case studies – preliminary positioning and sizing of major car components
12.1 Introduction
12.2 Platform concept
12.3 Factors affecting platform capability for new model variants
12.4 Examples illustrating role of SSS method
 12.4.1 Weight
 12.4.2 Vehicle type
 12.4.3 Sedan to station wagon/estate car – rear floor cross-member
 12.4.4 Closed structure to convertible
 12.4.5 Dimensions
12.5 Proposal for new body variants from an existing platform
 12.5.1 Front end structure
 12.5.2 Dash
 12.5.3 Floor
 12.5.4 Cab rear bulkhead (pick-up truck)
 12.5.5 Sideframe and cargo box side
 12.5.6 Rear compartment pan and cargo box floor
 12.5.7 Steps for preliminary sizing of components

References
Index