List of Chapters:

Foreword

Preface to the Second Edition

Preface to the First Edition

Chapter 1 Introduction to Composites and Care of Composite Parts

1.1 Definition of Composites
1.2 History of Composite Materials
1.3 Advantages and Disadvantages of Composites
 1.3.1 Advantages of Composites
 1.3.2 Disadvantages of Composites
 1.3.3 Advantages of Thermoset Resin Composites
 1.3.4 Disadvantages of Thermoset Resin Composites
 1.3.5 Advantages of Thermoplastic Resin Composites
 1.3.6 Disadvantages of Thermoplastic Resin Composites
1.4 Applications of Composites to Modern Aircraft, Yachts, Cars, and Trains
 1.4.1 Early Aircraft Structures
 1.4.2 Modern Aircraft Structures and Other Applications
1.5 Care of Composite Parts
 1.5.1 Sources of Damage to Composite Parts
 1.5.1.1 Physical or Chemical Damage
 1.5.1.2 Deterioration in Normal Service
1.5.2 Avoidance of Damage and Reduction of Deterioration in Service

Chapter 2 Materials

2.1 Fiber Reinforcement
 2.1.1 Comparison of Some High-Performance Fibers and Common Metals
 2.1.2 Glass Fiber
 2.1.2.1 Glass Manufacture
 2.1.2.2 Glass Fiber Manufacture
 2.1.3 Carbon Fibers
 2.1.3.1 Carbon Fiber Manufacture
 2.1.3.2 Future Development
 2.1.3.3 Further Details of Carbon and Graphite Fibers
 2.1.4 Aramid Fibers
 2.1.5 Boron Fibers
 2.1.6 Other New Fibers
2.2 Forms of Reinforcement
 2.2.1 Tapes
 2.2.2 Fabrics
 2.2.2.1 Woven Fabric Weave Styles
 2.2.2.2 Effect of Weave Style
 2.2.2.3 Noncrimp Fabrics
 2.2.2.4 Nonwoven Randomly Oriented Mats
 2.2.2.5 Fiber and Fabric Glossary
 2.2.3 Glass Fiber Finishes
 2.2.4 Carbon Fiber Finishes
 2.2.5 Aramid Fiber Finishes

Chapter 3 Applications of Composites

3.1 Applications of Composites in Various Industries
3.2 Case Studies

Chapter 4 Care and Repair of Advanced Composites

4.1 Care and Maintenance of Composite Parts
4.2 Repair Techniques
4.3 Quality Control and Inspection

Chapter 5 Conclusion

5.1 Summary
5.2 Future Directions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Sizing and Finish for New Types of Fibers and Fabrics</td>
<td>2.8</td>
</tr>
<tr>
<td>2.4</td>
<td>Matrix (Resin) Systems</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Thermoplastic Resins</td>
<td>2.8.1</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Thermosetting Resins</td>
<td>2.8.1.1 Old-Generation Thiokol Sealants</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Properties Required of Matrix Resins and Adhesives</td>
<td>2.8.1.2 New-Generation Polythioether Sealants</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Physical and Chemical Properties</td>
<td>2.8.1.3 Silicone Sealants</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Mechanical Properties</td>
<td>2.8.1.4 Viton Rubber Sealants</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Epoxy-Based Matrix Resins and Adhesives for Aerospace Use</td>
<td>2.8.2 Primers</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Epoxy and Phenolic Pre-Pregs and Film Adhesives—Curing Stages</td>
<td>2.8.3 Finishes</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Mixing and Mix Ratios for Epoxy Wet Resins</td>
<td>2.8.4 Conductive Coatings</td>
</tr>
<tr>
<td>2.4.5.1</td>
<td>Weighing</td>
<td>2.8.5 Erosion-Resistant Coatings</td>
</tr>
<tr>
<td>2.4.5.2</td>
<td>Mixing</td>
<td>2.8.6 Other Protective Coatings</td>
</tr>
<tr>
<td>2.4.5.3</td>
<td>Definitions Related to Mixing and Application</td>
<td></td>
</tr>
<tr>
<td>2.4.6</td>
<td>Polyester Resins</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Adhesives</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>Liquid and Paste Adhesives</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>Foaming Adhesives</td>
<td></td>
</tr>
<tr>
<td>2.5.3</td>
<td>Film Adhesives</td>
<td></td>
</tr>
<tr>
<td>2.5.4</td>
<td>Glue-Line Thickness Control</td>
<td></td>
</tr>
<tr>
<td>2.5.5</td>
<td>In-Service Effects on Resin Systems</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Core Materials</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>2.6.2</td>
<td>Foam Core Materials</td>
<td></td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Material Types</td>
<td>3.4 Shelf Life/Out Time</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Foam Density</td>
<td>3.5 Kitting</td>
</tr>
<tr>
<td>2.6.2.3</td>
<td>Advantages and Disadvantages</td>
<td>3.6 Recertification</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Honeycomb Core Materials</td>
<td>3.7 Care of Materials in the Hangar or Workshop</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>Honeycomb Material Types</td>
<td></td>
</tr>
<tr>
<td>2.6.3.2</td>
<td>Cell Shapes</td>
<td></td>
</tr>
<tr>
<td>2.6.3.3</td>
<td>Honeycomb Densities and Cell Sizes</td>
<td></td>
</tr>
<tr>
<td>2.6.4</td>
<td>Fluted Core</td>
<td></td>
</tr>
<tr>
<td>2.6.5</td>
<td>Syntactic Core</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Syntactic Foams and Potting Compounds</td>
<td></td>
</tr>
<tr>
<td>2.7.1</td>
<td>Filler Materials for Potting Compounds, Resin Systems, and Adhesives</td>
<td></td>
</tr>
<tr>
<td>2.7.2</td>
<td>Other Fillers</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Protective Coatings</td>
<td></td>
</tr>
<tr>
<td>2.8.1</td>
<td>Sealants</td>
<td></td>
</tr>
<tr>
<td>2.8.1.1</td>
<td>Old-Generation Thiokol Sealants</td>
<td></td>
</tr>
<tr>
<td>2.8.1.2</td>
<td>New-Generation Polythioether Sealants</td>
<td></td>
</tr>
<tr>
<td>2.8.1.3</td>
<td>Silicone Sealants</td>
<td></td>
</tr>
<tr>
<td>2.8.1.4</td>
<td>Viton Rubber Sealants</td>
<td></td>
</tr>
<tr>
<td>2.8.2</td>
<td>Primers</td>
<td></td>
</tr>
<tr>
<td>2.8.3</td>
<td>Finishes</td>
<td></td>
</tr>
<tr>
<td>2.8.4</td>
<td>Conductive Coatings</td>
<td></td>
</tr>
<tr>
<td>2.8.5</td>
<td>Erosion-Resistant Coatings</td>
<td></td>
</tr>
<tr>
<td>2.8.6</td>
<td>Other Protective Coatings</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Handling and Storage</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Shipping and Receiving</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Temperature Requirements</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Storage Practices</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Temperature Requirements</td>
<td></td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Dry Fabrics</td>
<td></td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Storage of Pre-Preg, Film, and Paste Adhesives, Potting Compounds, and Primers</td>
<td></td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Storage of Sealants for Aircraft Use</td>
<td></td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Storage of Consumable Items for Composite and Bonded Metal Repairs</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Shelf Life/Out Time</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Kitting</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Recertification</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Care of Materials in the Hangar or Workshop</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Manufacturing Techniques</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Filament Winding</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Lay-Up Methods for Fabrics and Tapes</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Hand Lay-Up (Wet and Pre-Preg Laminating)</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Automated Lay-Up</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Pultrusion</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Resin Transfer Molding</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Injection Molding</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5 Original Design Criteria

5.1 Principal, Primary, and Secondary Structures
 5.1.1 Sources of Damage to Composite Airframe Components
 5.1.2 Consequences of Failure

5.2 Types of Composite Structures
 5.2.1 Monolithic Laminated Structures (Solid Laminates)
 5.2.2 Sandwich Structures

5.3 Ply Orientation
 5.3.1 Warp Clock
 5.3.2 Balance and Symmetry
 5.3.3 Nesting and Stacking

5.4 Core Orientation

5.5 Operational Environment
 5.5.1 Temperature
 5.5.2 Humidity
 5.5.3 Contaminants
 5.5.4 Erosion
 5.5.5 Thermal Stresses
 5.5.6 Hygrothermal Effects
 5.5.7 Fire Resistance

5.6 Electrical Requirements
 5.6.1 Galvanic Corrosion
 5.6.2 Electromagnetic Interference
 5.6.3 Electrostatic Discharge
 5.6.4 Lightning Strike Energy Dispersion
 5.6.5 Radar Transmissivity

5.7 Mechanical Requirements
 5.7.1 Tensile and Flexural Strength
 5.7.2 Stiffness
 5.7.3 Fatigue
 5.7.4 Impact Resistance (Damage Tolerance)
 5.7.5 Creep

5.8 Attachments/Joints
 5.8.1 Bonded Joints
 5.8.2 Mechanically Fastened/Riveted Joints

5.9 Other Design Requirements
 5.9.1 Aerodynamic Smoothness
 5.9.2 Weight and Balance

5.10 References

Chapter 6 Safety and Environment

6.1 Introduction

6.2 Workshop Conditions for Good Bonding
 6.2.1 General Workshop Conditions

6.3 Respirable Fibers and Dust
 6.3.1 Fiberglass
 6.3.2 Carbon and Graphite Fibers
 6.3.3 Aramid Fibers
 6.3.4 Sanding Dust

6.4 Fumes and Vapors
 6.4.1 Resin Fumes
 6.4.2 Solvent Vapors
 6.4.3 Sealant Vapors
 6.4.4 Coatings
 6.4.5 Fuel
 6.4.6 Acid Fumes and Splash
 6.4.7 Exposure Limits

6.5 Skin Contact
 6.5.1 Fibers in Contact with the Skin
 6.5.2 Resins in Contact with the Skin
 6.5.3 Solvents in Contact with the Skin
 6.5.4 Selection of Suitable Gloves
 6.5.5 Skin Creams for Personal Protection

6.6 Material Safety Data Sheets

6.7 Exothermic Reactions

6.8 Waste Disposal

6.9 Safety Procedures
 6.9.1 Emergency Action First-Aid Procedures
 6.9.2 General Safety Procedures
 6.9.3 Personal Safety Precautions
 6.9.4 Dermatitis

6.10 Action in the Event of a Chemical Spillage

6.11 Explosion Risk

6.12 Static Discharge and Fire Prevention
 6.12.1 Static Discharge Prevention
 6.12.2 Fire Prevention

6.13 Safety Requirements for Electrical Appliances

6.14 ISO Environmental Management Standards

6.15 References

6.16 Bibliography

Chapter 7 Damage and Repair Assessment

7.1 Visual Inspection

7.2 Tap Test

7.3 Ultrasonic Inspection

7.4 X-Ray Methods

7.5 Eddy Current Inspection

7.6 Thermography

7.7 Bond Testers

7.8 Moisture Meters
Interferometry/Shearography

- 7.9 Interferometry/Shearography

Damage Types

- 7.10 Damage Types

Sources of Mechanical Damage

- 7.11 Sources of Mechanical Damage

Damage Mapping

- 7.12 Damage Mapping

Assessment of Damage Significance

- 7.13 Assessment of Damage Significance

References

Chapter 8 Source Documents

- 8.1 Revision Systems
- 8.2 Effectivity
- 8.3 Drawing Numbering Systems
- 8.4 Internal Documents
- 8.5 Material and Process Specifications
- 8.6 Original Equipment Manufacturer Documents
- 8.7 Regulatory Documents
- 8.8 Air Transport Association of America ATA 100 System
- 8.9 Aircraft Maintenance Manual
- 8.10 Component Maintenance Manual
- 8.11 Overhaul Manual
- 8.12 Illustrated Parts Catalog
- 8.13 Structural Repair Manual

Chapter 9 Structural Repair Manual (SRM) Repair Method Selection

- 9.1 Component Identification
- 9.2 Damage Classification
 - 9.2.1 Damage Terminology
 - 9.2.2 Critical Areas
 - 9.2.3 Allowable/Negligible Damage
 - 9.2.4 Repairable Damage
 - 9.2.5 Overhaul or Replace
 - 9.2.6 Other Considerations
- 9.3 Repair Methods
 - 9.3.1 Speedtape
 - 9.3.2 Resin Sealing
 - 9.3.3 Potted Repairs
 - 9.3.4 Bolted Doublers (Metal Plates) and Bonded Doublers (Composite Patches)
 - 9.3.5 Pre-Cured Doublers Versus Co-Cured Doublers
 - 9.3.6 Room-Temperature Wet Lay-Up
 - 9.3.7 Elevated-Temperature Wet Lay-Up
 - 9.3.8 Pre-Preg Repairs
 - 9.3.9 Scarfed and Stepped Lap Repairs
 - 9.3.10 Composite Repairs to Metals
- 9.4 References

Chapter 10 Repair Techniques

10.1 Preparation

- 10.1.1 Paint Removal
- 10.1.2 Disbonding Methods
 - 10.1.2.1 Disbonding Adhesively Bonded Metal Parts
 - 10.1.2.2 Disbonding Composite Parts
- 10.1.3 Damage Removal
 - 10.1.3.1 Damage Removal from Metal Parts
 - 10.1.3.2 Removal of Skin and Doubler Material
 - 10.1.3.3 Damage Removal from Composite Parts
 - 10.1.3.4 Removal of Core Material
 - 10.1.3.5 Removal of Surface Corrosion
- 10.1.4 Moisture and Contamination Removal
- 10.1.5 Surface Preparation of Composites—Repair Sanding and Ply Determination
 - 10.1.5.1 Abrading
 - 10.1.5.2 Taper Sanding/Scarfing
 - 10.1.5.3 Step Sanding and Cutting
- 10.1.6 Water Break Test
- 10.1.7 Metallic Surface Preparation

10.2 Typical Repairs

- 10.2.1 Edge Band Repairs
- 10.2.2 Repair of Damage to Core and One Skin
- 10.2.3 Repair of Damage to Core and Both Skins
- 10.2.4 Hybrid Repairs
- 10.2.5 Blind Repairs
- 10.2.6 Injected Repairs
- 10.2.7 Solid Laminate Repairs
- 10.2.8 Potted Repairs
- 10.2.9 Metal-to-Metal Bonding
- 10.2.10 Plastic Welding (Solvent or Heat)

10.3 Adhesive Usage

10.4 Bagging Materials, Release Films, Release Fabrics, Peel Plies, Breather Cloths, Bleeder Cloths, Bleed-Out Fabrics, and Application Techniques

- 10.4.1 Terminology
- 10.4.2 Selection Criteria
- 10.4.3 Surface Versus Envelope Bagging
- 10.4.4 Pleating
- 10.4.5 Bagging Sequence
10.4.6 Vacuum Requirements and Principles
 10.4.6.1 Vacuum Bonding
 10.4.6.2 Application of Vacuum Pressure to Plates and Assemblies Using Nonperforated Honeycomb
 10.4.6.3 Practical Techniques to Ensure Adequate Applied Vacuum Pressure to Parts Under Repair

10.4.7 Caul Plate and Dam Usage
10.4.8 Vertical Bleed Method
10.4.9 Squeeze-Out (Edge Bleed-Out) Method
10.4.10 Zero-Bleed Method
10.4.11 Ply Compaction and Debulking
10.4.12 Debugging Precautions and Typical Problems

10.5 Curing Stages and Temperatures—Heating Techniques
 10.5.1 Curing Stage Definitions
 10.5.2 Low-Temperature Cure
 10.5.3 Elevated-Temperature Cure
 10.5.4 Direct Versus Indirect Heating
 10.5.5 Ramp Rates and Soak Cycles
 10.5.6 Temperature Control and Monitoring
 10.5.7 Thermocouple Placement
 10.5.8 Temperature Control Problems
 10.5.9 Hot Bonder and Heater Blanket Usage
 10.5.10 Heat Sinks
 10.5.11 Thermocouples
 10.5.12 Distortion of Parts During Heating or Cooling

10.6 Post-Repair Inspection
10.7 Surface Restoration
10.8 References

Chapter 11 Mechanical Fastening Systems
11.1 Introduction
11.2 Fastener Types
 11.2.1 Fastener Standards
 11.2.2 Fastener Compatibility
 11.2.3 Rivets
 11.2.3.1 Solid Rivets
 11.2.3.2 Blind Rivets
 11.2.3.3 Hollow End Rivets
 11.3 Screws, Nuts, and Bolts
 11.3.1 Specialty Fasteners (Special Bolts)
 11.3.2 Lockbolts
11.4 Spacers, Bolt Inserts, and Grommets
11.5 Hole Preparation
 11.5.1 Drilling
 11.5.2 Hole Sizes and Tolerances
 11.5.3 Edge Distance and Fastener Pitch
 11.5.4 Hole Protection

11.6 Fastener Installation and Removal
 11.6.1 Fastener Installation
 11.6.2 Fastener Removal
11.7 Fastener Substitution
11.8 Bonded Fasteners
11.9 Composite Fasteners
11.10 References

Chapter 12 Documentation
12.1 Process Control Documents
 12.1.1 Cure Chart/Data Strip
 12.1.2 Routine and Nonroutine Work Documents
 12.1.2.1 Routine Work Documents
 12.1.2.2 Nonroutine Work Documents
 12.1.3 Nondestructive and Destructive Inspection Data
 12.1.4 Coupon Test Results
 12.1.5 Clean-Room Temperature and Humidity
 12.1.6 Return to Service/Log Book Sign-Offs
12.2 Calibration Records
12.3 Material Control Records
12.4 Component Documentation
12.5 Training Records

Chapter 13 Shop Equipment and Hand Tools
13.1 Hand Tools and Techniques
 13.1.1 Drills
 13.1.2 High-Speed Grinders
 13.1.3 Cutting Utensils
 13.1.4 Hand Routers
 13.1.5 Orbital Sanders
 13.1.6 Cast Cutter (Oscillating Saw)
 13.1.7 Painting Equipment
 13.1.8 Resin Applicators
13.2 Shop Equipment
 13.2.1 Bandsaws
 13.2.2 Air Compressors
13.3 Heating Devices
13.4 Measuring Devices
13.5 Health and Safety Equipment
13.6 References

Chapter 14 Tooling and Mold Making
14.1 Introduction
14.2 Caul Plate and Dam Fabrication
14.3 Splash Mold Making
14.4 Release Agents/Films
14.5 Simple Room-Temperature Tooling
14.6 Room-Temperature Curing Pre-Preg Tooling
 14.6.1 Lay-Up
 14.6.2 Debulk Procedure
 14.6.3 Final Bagging Procedure
 14.6.4 Autoclave Cure
 14.6.5 Time Limits
 14.6.6 Step Post-Curing Procedure
 After Room-Temperature or
 Low-Temperature Initial Cure
 14.6.7 Support Structures
 14.6.8 Initial Release Priming of New
 Composite Tools
 14.6.9 Developments in Low-Temperature
 Curing Materials
14.7 References

Chapter 15 Metal Bonding
15.1 Introduction
 15.1.1 History and Requirements
 15.1.1.1 Metal Bonding
 15.1.1.2 Epoxy Adhesives
 15.1.1.3 Requirements for
 Adhesives
 15.1.2 Principles of Adhesion
 15.1.2.1 Adhesion Theory
 15.1.2.2 Environmental Durability
 15.1.2.3 Temperature Effects
 15.1.2.4 Humidity Effects
 15.1.3 Advantages and Disadvantages of
 Metal Bonding
 15.2 Surface Preparation Methods
 15.2.1 Abrasive Cleaning
 15.2.2 Pasa-Jell
 15.2.3 Hydrofluoric Acid Etching
 15.2.4 Grit Blast/Silane
 15.2.5 Alodine or Alochrom 1200
 15.2.6 Boeing Boegel EIPI Sol-Gel Process
 15.2.7 FPL Etch
 15.2.8 Phosphoric Acid Anodizing
 15.2.9 Phosphoric Acid Anodizing
 15.2.9.1 Phosphoric Acid
 Containment System (PACS)
 15.2.9.2 Phosphoric Acid Non-
 Tank Anodizing (PANTA)
 15.2.10 Metadalic/Sifco Selective Plating
 (U.K.) Ltd.
 15.2.11 Ciba Laser Pretreatment
 15.3 Primers
 15.3.1 Reasons for Using Primers
 15.3.2 Primer Types
 15.3.3 Application of Primers
 15.3.4 Curing/Drying
 15.3.5 Thickness Verification
 15.4 Handling Primers
 15.5 References
 15.6 Bibliography

Chapter 16 Design Guide for Composite Parts
16.1 Introduction
16.2 Analysis of Reports Received
16.3 Other Required Design Features Not
 Mentioned in the Analyzed Reports
16.4 References

Chapter 17 Repair Design
17.1 General Repair Design
 17.1.1 Introduction to Repair Design
 17.1.2 Laminate Loading
 17.1.2.1 Tension and Compression
 Loads and Strains
 17.1.2.2 Shear Stress and Strain
 17.1.2.3 Poisson’s Ratio
 17.1.3. Repair Philosophy and Design
 Requirements
 17.1.3.1 Certification Load
 Capacity
 17.1.3.2 Repair Categorization
 17.2 Laminate Repair Design
 17.2.1 Introduction to Laminate Repair
 Design
 17.2.2 Laminate Repair Design
 Considerations
 17.2.2.1 Stiffness
 17.2.2.2 Strength
 17.2.2.3 Stability
17.2.2.4 Environmental Effects and Protection

17.2.2.4.1 Operational and Glass Transition Temperatures (T_g)

17.2.2.4.2 Lightning and Electrostatic Protection

17.2.2.5 Other Repair Design Considerations

17.2.2.6 Laminate Repair Recommendations

17.2.3 Laminate Analysis Techniques for Repair Design

17.2.3.1 Introduction to Simplified Analysis Techniques

17.2.3.2 Elastic Modulus (E) Analysis

17.2.3.3 Strength (F) Analysis

17.2.3.4 Poisson’s Ratio (V_0) Analysis

17.2.3.5 In-Plane Shear Modulus (G) Analysis

17.2.4 In-Plane Shear Strength (t)

17.3 Core Repair Design

17.3.1 Function and Loading of Core in Sandwich Construction

17.3.2 Core Material, Density, and Cell Size

17.3.3 Core Repair Design Recommendations

17.4 Bonded Joint Repair Design

17.4.1 Introduction to Bonded Joints

17.4.2 Types of Bonded Joints

17.4.3 Failure Modes of Bonded Joints

17.4.4 Adhesive Behavior in Bonded Joints

17.4.4.1 Adhesive Shear Stress and Strain

17.4.4.2 Elastic and Plastic Adhesive Behavior

17.4.4.3 Temperature and Moisture Effects

17.4.4.4 Joint Adherend Effects—Stiffness Imbalance and Thermal Mismatch

17.4.4.5 Recommended Joint Overlaps and Simplistic Analysis

17.4.5 Adhesive Peel Stress and Displacement

17.4.6 Durability—Fatigue, Creep, and Environmental Effects

17.4.7 Bonded Joint Repair Considerations

17.4.8 Bonded Joint Repair Design Recommendations

17.5 Mechanically Fastened Joints

17.5.1 Introduction to Mechanically Fastened Joints

17.5.2 Fastened Laminate Failure Modes

17.5.3 Fastener Failure Modes

17.5.4 Open-Hole Stress Concentrations—Composites Versus Metals

17.5.5 Loading of Mechanically Fastened Joints

17.5.6 Loaded Fastener Holes

17.5.7 Fastener Load Distribution and Joint Geometry

17.5.8 Lay-Up Orientation for Fastened Joints

17.5.9 Pad-Ups and Hybrid Material Application

17.5.10 Fatigue of Fastened Composite Joints

17.5.11 Effects of Gaps and Shims

17.5.12 Fastener Selection

17.5.13 Mechanically Fastened Repairs in Sandwich Panels

17.5.14 Fastened Joint Repair Recommendations

17.6 References

17.7 Bibliography

Additional Information

Index

About the Authors