The Winning Solar Car

A Design Guide for Solar Race Car Teams

List of Chapters

Chapter 1

Introduction
- A. Identification of the Problem
- B. Solar Car Racing
- C. Energy Available and Distances Traveled in Solar Car Racing
- D. Homework Assignment
- E. References

Chapter 2

Energy Management Modeling of Solar Car Performance
- A. Purpose of Modeling
- B. Aerodynamics
- C. Rolling Resistance
- D. Homework Assignment
- E. Solar Array Power
- F. Battery Efficiency
- G. Motor-Drive System
- H. Parasitic Losses
- I. Gravitational Energy
- J. Kinetic Energy
- K. Modeling: Summary
- L. Homework Assignment
- M. Hilly, More Realistic Terrain
- N. Homework Assignment
- O. Extra Credit Homework: Milford Track Homework (Study of How Hills Affect Solar Car Efficiency)
- P. Extra Credit Homework: Heartland Park Track (Study of How Sharp Corners Affect Solar Car Efficiency)
- Q. References

Chapter 4

Solar Array Design
- A. Solar Cell Fundamentals
- B. Open-Circuit Voltage
- C. Short-Circuit Current
- D. Solar Cell Efficiency—Solar Spectrum
- E. Solar Cell Model
- F. Illumination Level I_L
- G. Temperature
- H. Coatings
- I. Wiring the Solar Array
- J. Shading of the Array
- K. Cell Matching
- L. Angling of Cells in a String
- M. Shingling of Cells
- N. Series-Parallelizing of Cells
- O. Bypass Diodes
- P. Array Diagnosis and Repair
- Q. Matching Array Voltage with Battery Voltage
- R. Power Point Trackers
- S. Extreme Low-Light/No-Light OFF Switch
- T. Homework
- U. References

Chapter 5

Aerodynamics of Solar Cars
- A. Fundamentals
- B. Car Body Shape
- C. Camber
- D. Reynolds Number
- E. Body Drag Area Calculations
- F. Body Drag Introduction
- G. Canopy Drag
- H. Other Shapes Protruding into the Airstream
- I. Drag Caused by the Wheels
- J. Ventilation
- K. Wingtip Drag
- L. Induced Drag
- M. Summary
- N. Side Winds
- O. Computational Fluid Mechanics (CFM)
- P. Wind Tunnel Testing
- Q. References
Chapter 6
Composite Materials
A. Body Structure
B. Body Strength Requirement
C. Attachment Points
D. Body Support Plates or Angles
E. Quality of Lay-Up
F. Box Beam Construction
G. Mold and Body Construction
H. Strength and Stiffness of Honeycomb and Foam Core Composites
I. Composites Assignment
J. References

Chapter 7
Car Balance and Spring Rates
A. Car Balance and Moment of Inertia
B. Selecting Spring Rates
C. Homework
D. References

Chapter 8
Tires and Rolling Resistance
A. Tire Selection
B. Rolling Resistance Phenomenon
C. Energy Loss Model for Tire Misalignment
D. References

Chapter 9
Front Suspension Design
A. Wheel Selection
B. Brake Design
C. Homework for Brakes
D. Hub and Spindle
E. Suspension and Chassis Design Philosophy
F. Front-End Geometry and Steering
G. Homework for Front Suspension Geometry
H. References

Chapter 10
Rear Suspension, Drive, and Chassis Structure
A. Rear Suspension and Drive Design
B. Drivetrain
C. Electric Motors
D. Chassis Structure
E. References

Chapter 11
Battery Systems
A. Battery Fundamentals
B. Fundamentals of Battery Chemistry
C. Lead-Acid Batteries
D. Silver-Zinc Batteries
E. Nickel-Cadmium (NiCd) Batteries
F. Nickel-Hydrogen and Nickel-Metal-Hydride (NMH) Batteries
G. Lithium-Ion and Lithium-Polymer Batteries
H. Charge-Discharge Curves
I. Battery Modeling
J. Battery Pack Modeling
K. Wiring of the Battery Box
L. Battery Safety
M. References

Chapter 12
Electrical Systems
A. Introduction
B. Wiring Diagram
C. Fuses
D. Wire Sizing
E. Connectors and Switches
F. Electrical Subsystems

Index
About the Author